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A multiscale model based on synergistic damage mechanics is developed for predicting the
elastic response of symmetric composite laminates containing matrix cracks in plies of
multiple orientations, and subjected to an arbitrary multiaxial strain state. On the micro-
mechanical scale, the proposed multiscale modeling approach invokes three-dimensional
finite element analysis to characterize the multiaxial damage state within the cracked mul-
tidirectional laminate, and evaluate damage constants required in the damage constitutive
model. These damage constants capture the ply constraint effects acting on the surface dis-
placements of the developed matrix cracks in all off-axis and on-axis plies. The represen-
tative volume element describing the applied multiaxial stress state within the laminate is
developed through finite element models using periodic boundary conditions, which are
necessary to accurately represent the physical problem. The developed micromechanical
models also allow for prediction of the laminate’s shear deformation response. The model
is shown to accurately capture the nonlinear stiffness degradation exhibited by cross-ply,
quasi-isotropic and angle-ply laminates containing matrix cracks in multiple plies and sub-
jected to various multiaxial stress states. The prediction results are validated by available
experimental data and compared with independent three-dimensional finite element cal-
culations. The multiscale model can easily be implemented into a commercial finite ele-
ment software package in order to predict stiffness degradation in composite structures.
This will provide a means to predict the integrity and durability of these structures, and
ultimately lead to damage-tolerant designs.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

For a wide range of practical structural applications, ori-
enting the plies of composite laminates along multiple
directions is required to meet specific directional strength
and stiffness requirements. A key issue with the design of
multidirectional laminates is that their microstructure is
quite complex, leading to a complex stress state upon load-
ing. In these laminates, local matrix cracks tend to develop
in multiple directions simultaneously as the structure is
progressively loaded (Tong et al., 1997). These subcritical
matrix or ply cracks, which are contained within the indi-
vidual plies and are usually oriented along the respective
fiber directions, do not cause immediate failure but rather
accumulate during loading. This consequently leads to a
complex three-dimensional problem as cracks in multiple
orientations evolve simultaneously with differing rates
and densities (Singh and Talreja, 2009). The difficulty of
the problem increases further when the laminates are sub-
jected to complex multiaxial stress or strain states repre-
senting the real application of composite structures. In
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such situations, the multidirectional crack state will be
subjected to additional crack driving stress components,
which will ultimately alter the resulting material behavior.
Since practical structures are subjected to multiaxial load-
ing, or more generally local multiaxial stress states, it is
important for corresponding prediction models to account
for the influence of these stress states on matrix cracking.
This is essential for accurately predicting the integrity
and durability of practical structures, and for performing
progressive failure analysis. This is in fact a main focus of
the third world-wide failure exercise (WWFE-III) con-
ducted by Kaddour et al. (2013), in which the evolution
of subcritical damage and its effect on the mechanical
response of composite laminates is considered. If a multi-
axial progressive damage model can be integrated with a
non-destructive evaluation (NDE) technique, a real-time
structural health monitoring tool can be developed. This
will effectively lead to the design of safer and more cost-
effective composite structures.

With respect to its undamaged state, the behavior of a
laminate in the presence of subcritical matrix cracks is
altered, and therefore the local damage state must be con-
sidered in prediction models in order to accurately capture
this inelastic material behavior and to determine the ulti-
mate material strength or stiffness (Varna et al., 2001). A
reduction in the laminate stiffness properties is one of
the main outcomes of the evolving damage state. Cur-
rently, there are no rigorous and comprehensive prediction
tools to asses the response of such multidirectional lami-
nates undergoing progressive damage development in
the form of ply cracks in multiple-oriented plies under
multiaxial loading. Current designs are far too conservative
since they do not account for the evolving damage state
during the design process, and as a result the laminate
capabilities are not fully utilized. A number of models have
been developed in recent years that attempt to predict
stiffness degradation in composite laminates resulting
from ply cracking. Many analytical models were developed
with this purpose, including the shear-lag model by
Highsmith and Reifsnider (1982), the variational models
by Hashin (1985) and Nairn (1989), and the self-consistent
approximation by Dvorak et al. (1985). Most of these mod-
els only consider cross-ply laminates and are not suitable
for practical scenarios involving multidirectional laminates
consisting of a mix of both on-axis and off-axis plies.

Additional models that correlate matrix cracking with
stiffness degradation are those based on the principles of
continuum damage mechanics (e.g., Allen et al., 1987;
Ladeveze and LeDantec, 1992; Talreja, 1985). The main
advantage with such models is that the effects of particular
damage modes can be directly incorporated into the con-
stitutive equations through the use of damage tensors.
However, a key drawback of continuum-based damage
models is their reliance on extensive experimental testing
for calibrating the material damage parameters. In order to
alleviate this problem, Talreja (1996) proposed a synergis-
tic damage mechanics (SDM) approach that combines the
strengths of micromechanics and continuum mechanics
to produce a versatile multi-scale methodology. The meth-
odology relies on computational micromechanics, in lieu of
experimental testing, to calibrate the material damage
parameters. Following this approach, a predictive model
for off-axis ply cracking in multidirectional laminates
was later developed by Singh and Talreja (2009, 2010) to
predict the behavior of laminates containing multidirec-
tional ply cracks. The model has also been applied to con-
duct several test cases of the WWFE-III exercise (Singh and
Talreja, 2013). To understand the underlying concepts and
the details of the SDM methodology, the reader is referred
to Talreja and Singh (2012).

It should be noted that only a few models reported in the
literature account for multiaxial loading, or more generally
the local multiaxial stress states inherent in multidirec-
tional laminates. Recent studies have been reported in
which local multiaxial stresses and their influence on ply
crack initiation and development are accounted for (e.g.,
McCartney, 1998; Mayugo et al., 2010; Vyas and Pinho,
2012; Laurin et al., 2013; Chamis et al., 2013; Kashtalyan
and Soutis, 2013; Flatscher et al., 2013). Nonetheless, most
of the reported models either limit their application to uni-
directional or cross-ply laminates, or to multidirectional
laminates containing only cracks in one transverse direc-
tion. Furthermore, they simplify the inherent complex
boundary value problem by assuming that a two dimen-
sional geometric representation of ply cracks is sufficient.
Such a two dimensional representation of the problem does
not accurately capture the local crack behavior and the sur-
rounding stress state, and thus a three dimensional solution
becomes necessary when multiple ply cracks are present
(Singh and Talreja, 2009). In addition to the above, many
of the indicated models rely on extensive experimental data
for their calibration, which is seen as another limitation.
Finally, a number of these models do not consider the evolu-
tion of discrete damage modes and the influence of the con-
straining effect between the adjacent plies in a laminate.

The focus of this study is to improve the capabilities of
the aforementioned multiscale SDM approach by including
multiaxial capabilities in the prediction methodology. Spe-
cifically, emphasis is placed on expanding the capability of
the micromechanics computations in order to account for
multiaxial effects on stiffness degradation, and to include
the capability of predicting shear modulus degradation.
The long-term goal is to predict damage evolution in prac-
tical composite components subjected to multiaxial stres-
ses (see Montesano and Singh, 2015), and the current
study is the first step towards this goal. A brief overview
of the SDM methodology is presented in the subsequent
sections, with emphasis on the laminate constitutive laws
and the micromechanical computational models. The pre-
diction results for three types of multidirectional laminates
(cross-ply, quasi-isotropic and angle-ply) is then presented
along with a rigorous discussion. Finally, the main findings
of the study are outlined in the conclusions.
2. Synergistic damage mechanics model

2.1. Damage characterization in multidirectional laminates
subjected to multiaxial strains

Consider a multidirectional laminate consisting of uni-
directional on-axis, off-axis and transverse plies as shown
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Fig. 1. An RVE of a damaged multidirectional laminate subjected to a two-dimensional multiaxial strain state – transformed strain components are shown
for the h ply only.
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in Fig. 1, where off-axis orientations are denoted by h.
When subjected to quasi-static multiaxial loading, ply
cracks may initiate and multiply simultaneously in plies
with different orientations. Experimental observations
indicate that these sub-critical cracks span the ply thick-
ness and are oriented along the fiber direction (see
Fig. 1). It must be noted that ply cracks are in fact single
cracks that result from the rapid coalescence of smaller
matrix and fiber–matrix interface cracks within the ply.
Under multiaxial loading conditions, it is important that
the prediction model accounts for the transformed strain
components (i.e., e11, e22, and c12 in Fig. 1) since these are
the main crack driving mechanisms.

In order to characterize a particular damage state, con-
sider the continuum body of an inhomogeneous material
as shown in Fig. 2. In the presence of widespread micro-
scopic damage, the effective laminate material properties
can be determined by defining a representative volume
element (RVE) of the laminate with volume V as shown
in Fig. 1. Assuming there are N different damage entities
for a given damage mode, a, in the RVE, the damage state
for a particular damage mode can be represented by a sec-
ond-order tensor as, Talreja (1994):

DðaÞij ¼
1
V

X
ka

ðdijÞka
ð1Þ

where ka = 1,2, . . .,N. Assuming that the influence of cracks
is governed by Mode I only (i.e., normal crack opening),
then the damage tensor is defined by, Singh and Talreja
(2009):
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Fig. 2. Representation of a generic composite material with evolving
microstructure (i.e., damage), and an effective homogenized continuum.
DðaÞij ¼
jat2
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ninj ð2Þ

In this derivation, it is assumed that cracks in a single ply
(i.e., one damage mode a) are evenly spaced, have the same
surface area, and all run across the entire width of the RVE.
The parameter ta is the cracked ply thickness, sa is the
crack spacing, and ni ¼ ðsin h; cos h;0Þ are crack surface
normal unit vector components. The constraint parameter,
ja, accounts for the constraining effect on ply cracks
caused by adjacent plies in the laminate. Note that ply
crack spacing is sa = 1/qa, where qa is the corresponding
crack density.

2.2. Constitutive law for homogenized laminate

To represent the damaged laminate as an effective lin-
ear elastic continuum, a typical Helmholtz free energy def-
inition yields the following constitutive law, Singh and
Talreja (2009):

rij ¼ CijklðDðaÞij Þekl ð3Þ

where rij is the Cauchy stress tensor, eij the strain tensor,
and Cijkl the stiffness tensor. Most laminates used in prac-
tice are thin, symmetric and balanced about their mid-
plane, thus the formulation presented here will assume
orthotropic material symmetry under plane stress. The
general form of the stiffness tensor, utilizing Voigt nota-
tion, is given by:

Cpq ¼ Co
pq �

X
a

CðaÞpq ð4Þ

where Co
pq is the stiffness tensor for the undamaged mate-

rial, and the CðaÞpq terms correspond to changes in the stiff-
ness tensor caused by the corresponding damage mode,
a, which are functions of the damage tensor terms, DðaÞij .
The total stiffness tensor presented in Eq. (4) can be
defined for a particular laminate consisting of any number
of damage modes, a. In this study, four main classes of lam-
inates will be studied: [�h]s, [0/90]s, [0/�h/90]s, and [0/90/
�h]s.

A general laminate shown in Fig. 1 subjected to a mul-
tiaxial strain state may exhibit four distinct damage modes
as indicated in Table 1. The CðaÞpq terms for the first three
damage modes are defined as, Singh and Talreja (2009):



Table 1
Damage modes considered in the SDM model.

Damage mode, a Description

1 Matrix cracks in �h plies
2 Matrix cracks in +h plies
3 Matrix cracks in 90� plies
4 Matrix cracks in 0� plies
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Cð1Þpq þ Cð2Þpq ¼
jht2

h

sht

2að1;2Þ1 að1;2Þ4 0

að1;2Þ4 2að1;2Þ2 0

0 0 2að1;2Þ3

2
664

3
775 ¼ Dh að1;2Þi

h i

ð5Þ

Cð3Þpq ¼
j90t2

90

s90t

2að3Þ1 að3Þ4 0

að3Þ4 2að3Þ2 0

0 0 2að3Þ3

2
664

3
775 ¼ D90 að3Þi

h i
ð6Þ

The damage mode corresponding to cracking in the on-axis
plies (i.e., a = 4) is also included here due to multiaxiality,
where the corresponding CðaÞpq term is:

Cð4Þpq ¼
j0t2

0

s0t

2að4Þ1 að4Þ4 0

að4Þ4 2að4Þ2 0

0 0 2að4Þ3

2
664

3
775 ¼ D0 að4Þi

h i
ð7Þ

The aðaÞi

h i
matrices contain material constants that corre-

spond to each damage mode, a. The constraint parameters
jh, j90 and j0, the cracked ply thicknesses th, t90 and t0, and
the crack spacing terms sh, s90 and s0 correspond to the ±h,
90� and 0� plies, respectively. Note the cracked ply thick-
nesses appearing in Eqs. (5)–(7) depend on whether the
cracked ply is centrally located or located away from the
laminate mid-plane. For example, for the [0/90]s cross-
ply laminate the cracked ply thicknesses are t0 = tply, and
t90 = 2tply, where tply is the thickness of a single ply.

It seems that since each damage mode has an indepen-
dent CðaÞpq term, there is no explicit coupling between the
damage modes in the SDM model formulation. However,
the constraint parameters, j, are in fact the coupling terms,
which will be detailed shortly. Using the expressions in
Eqs. (5)–(7), the total stiffness for a specific laminate can
be defined as follows:

Cpq ¼

Eo
x

1�mo
xymo

yx

mo
xyEo

y

1�mo
xymo

yx
0

mo
xyEo

y

1�mo
xymo

yx

Eo
y

1�mo
xymo

yx
0

0 0 Go
xy

2
6664

3
7775�

X
a

aaDa

2aðaÞ1 aðaÞ4 0

aðaÞ4 2aðaÞ2 0

0 0 2aðaÞ3

2
664

3
775
ð8Þ

where Eo
x , Eo

y , Go
xy, mo

xy, mo
yx are the longitudinal modulus,

transverse modulus, in-plane shear modulus, and major
and minor Poisson’s ratios, respectively, for the virgin lam-
inate. The aa terms are scalar integers that characterize the
influence of crack size for a specific laminate given a par-
ticular stacking sequence, which account for the number
of plies in a given orientation. As an example, for a [0/
�h/90]s laminate the total damage tensor is given by:

X
a

CðaÞpq ¼ 2 Cð1Þpq þ Cð2Þpq

n o
þ Cð3Þpq þ 2Cð4Þpq

¼ 2Dh að1;2Þi

h i
þ D90 að3Þi

h i
þ 2D0 að4Þi

h i
ð9aÞ

Similarly for [�h]s, [0/90]s, and [0/90/�h]s laminates:X
a

CðaÞpq ¼ Cð1Þpq þ Cð2Þpq

n o
¼ Dh að1;2Þi

h i
ð9bÞ

X
a

CðaÞpq ¼ Cð3Þpq þ 2Cð4Þpq ¼ D90 að3Þi

h i
þ 2D0 að4Þi

h i
ð9cÞ

X
a

CðaÞpq ¼ Cð1Þpq þ Cð2Þpq

n o
þ 2Cð3Þpq þ 2Cð4Þpq

¼ Dh að1;2Þi

h i
þ 2D90 að3Þi

h i
þ 2D0 að4Þi

h i
ð9dÞ

The expression in Eq. (8) can be used to define the total
stiffness tensor for any general symmetric laminate sub-
jected to in-plane multiaxial loading, containing any num-
ber of damage modes and considered to have material
orthotropic symmetry, so long as the constraint parame-
ters, j, and the material constants aðaÞi for all relevant dam-
age modes can be determined. In order to define the
constraint parameters for a specific damage mode, the cor-
responding crack opening displacement (COD) is used and
defined as the normal separation between the crack faces
(i.e., direction 2 in Fig. 1). Thus, ja is defined by:

ja ¼
ðDu2ÞðaÞ
eeff ta

ð10Þ

where ðDu2ÞðaÞ is the computationally evaluated COD aver-
aged over the thickness of the ply. The average COD is nor-
malized by the cracked ply thickness and effective strain,
eeff, which is in fact the transformed strain component act-
ing normal to the crack surface (i.e., eeff = e22). Transformed
strain components are used here to incorporate multiaxial
effects in the SDM model; this was not considered in pre-
vious models where only uniaxial loading was considered.

The material constant matrices (i.e., aðaÞi

h i
) depend on

the active damage mode, and are left independent in Eq.
(8) for multiaxial loading. This ensures that these terms
are in fact constants, with a set of distinct values for each
damage mode as shown in Eqs. (5)–(7). This also ensures
that the influence of each damage mode on the evolving
material engineering moduli (Ex, Ey, Gxy, mxy, myx) are accu-
rately captured. In previous work from Singh and Talreja
(2009), these matrices were combined into one simple
matrix with the assumption that they were constants with
respect to off-axis ply orientation. The multiaxiality of the
problem in the current study shows that this is in fact not
applicable here. It should be noted that this linear damage
formulation presented in Eq. (8) results in nonlinear stiff-
ness predictions (see Section 4).

From the analytical stiffness-damage relationship
defined in Eq. (8), the material engineering moduli for a
damaged laminate can now be defined by the following
relationships:
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Ex ¼
C11C22 � C2

12

C22
; Ey ¼

C11C22 � C2
12

C11
;

mxy ¼
C12

C22
; Gxy ¼ C66; myx ¼ mxy

Ey

Ex

ð11Þ

Furthermore, in previous work the degradation of the dam-
aged laminate in-plane shear modulus, Gxy, was not con-
sidered. In this study the in-plane shear modulus is
considered due to the proper boundary conditions
employed by the micromechanical simulation models
(see Section 3), which is imperative since due to the mul-
tiaxial nature of the problem.

2.3. Nonlinear damage formulation

In the derivation of the constitutive relations presented
in Section 2.2, it was assumed that only the first-order
terms of the damage tensor components are considered
in the definition of the Helmholtz free energy function.
The model was recently expanded by Singh (2013) where
the second-order terms of the damage tensor components
were also considered in order to increase the model accu-
racy. The model developed here for multiaxial cases can
similarly be expanded to include second-order damage
terms, where the CðaÞpq terms will have the following form:

Cð1Þpq þ Cð2Þpq ¼ Dh að1;2Þi

h i
þ D2

h bð1;2Þi

h i
ð12Þ

Cð3Þpq ¼ D90 að3Þi

h i
þ D2

90 bð3Þi

h i
ð13Þ

Cð4Þpq ¼ D0 að4Þi

h i
þ D2

0 bð4Þi

h i
ð14Þ

The bðaÞi

h i
matrices contain additional material constants

that correspond to a specific damage mode, a. The total
stiffness is therefore defined by:

Cpq ¼ Co
pq �

X
a

aaDa

2aðaÞ1 aðaÞ4 0

aðaÞ4 2aðaÞ2 0

0 0 2aðaÞ3

2
664

3
775

�
X

a
aaD2

a

2bðaÞ1 bðaÞ4 0

bðaÞ4 2bðaÞ2 0

0 0 2bðaÞ3

2
664

3
775 ð15Þ
3. Development of RVE for multiaxial stress states in
multidirectional laminates

The main advantage of the SDM modeling approach is
that it relies on computational micromechanics in lieu of
experimental testing to calibrate the material damage
parameters. In this study, computational micromechanics
is employed to define the averaged CODs, ðDu2ÞðaÞ, as well

as the material constant tensors, aðaÞi

h i
and bðaÞi

h i
, corre-

sponding to each damage mode for a specific laminate.
The aim is to capture the constraining effects of the adja-
cent plies on a cracked ply of interest using 3D finite ele-
ment (FE) analysis. This section describes new multiaxial
capabilities that are added to the computational microme-
chanical FE model in order to define the crack surface dis-
placements. Periodic boundary conditions (PBC) are
properly applied to the FE model through the use of con-
straint equations as will be described here.

3.1. Repeating unit cell geometry and finite element model

For each laminate configuration considered, microme-
chanical FE models containing sub-critical ply cracks are
generated in order to conduct the corresponding computa-
tional simulations. An appropriate RVE for the particular
crack-containing laminate under consideration must be
defined, which accurately represents the material proper-
ties, the ply specific geometry, and the orientation of the
cracks present for a given damage state. Furthermore, if
PBCs are invoked then the RVE must also be a repeating
unit cell (RUC). It can be difficult to identify the repeating
geometry for a laminate containing ply cracks in multiple
orientations, although with some reasonable assumptions
a RUC can always be defined.

For demonstration purposes, a [0/90/�h]s laminate con-
taining ply cracks in multiple orientations will be consid-
ered because of its complexity. Due to symmetry about
the mid-plane, a 3D RVE for the half-laminate containing
cracks in each ply is used as shown in Fig. 3(a), where
the cracked ply thickness for the 0� ply, the laminate
half-thickness, and the RVE width are shown. The cracks
in each ply are assumed to have uniform spacing as shown
in Fig. 3(b), and are assumed to run across the entire width
of the RVE. Since the RVE represents a small point in the
continuum of the laminate as shown in Fig. 2, the latter
assumption seems quite reasonable. The former assump-
tion has been shown to be invalid when the crack spacing
is quite high, but tends to be accurate as the crack spacing
becomes smaller (Li et al., 2009). The cracks are also
assumed to span through the thickness of the correspond-
ing plies, which is consistent with experimental observa-
tions of unidirectional laminates. Furthermore, the cracks
in each ply are also assumed to intersect at a single (x,y)
location, which implies a state of maximum crack interac-
tion. This may be considered a worst-case scenario, which
may be slightly conservative at low crack densities (or high
crack spacing). However, as the crack density increases the
accuracy of this assumption also increases since cracks in
different plies are most likely to interact. Experimental evi-
dence by Tong et al. (1997) does suggest that cracks in dif-
ferent oriented plies begin at their common interfaces. This
is due to the fact that the high stresses at the crack tips in
one ply may cause a crack to initiate at that same location
in an adjacent ply with a different orientation. Therefore,
this is deemed the best choice for the micromechanical
simulations.

Generally for the definition of the RVE, the crack spac-
ing in plies of different orientations can be independent
from one another. However, in order to specifically define
a RUC, it is necessary to restrict the crack spacing of plies
that have different orientations. For example, it must be
ensured that the 90� ply crack spacing, s90, is equal to or
a multiple of the h ply crack spacing projection on the x-
direction, shx, as shown in Fig. 3(b). Similarly, the 0� ply
crack spacing, s0, must be equal to or a multiple of the h
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ply crack spacing projection on the y-direction, shy. These
restrictions ensure that regardless of the number of dam-
age modes present, a RUC can always be defined and
proper periodic boundary conditions can be invoked. These
restrictions have no bearing on the accuracy of the micro-
mechanical FE models, and do not limit the model capabil-
ities. Moreover, in order to simplify the equations that
represent the PBC (see Section 3.2) it is also ensured that
there are no crack surfaces on faces A, B, C and D of the
RUC, and no crack tips on edges 1, 2, 3 and 4 of the RUC
(see Fig. 3(b), where the RUC is offset slightly). This ensures
that all cracks are internal to the RUC and that there are no
issues applying the PBC, with the trade-off of a higher
demand for meshing the RUC. It should be further noted
that the size of the RVE in the x–y plane (see Fig. 3(b)) var-
ies with the ply crack density (spacing), and that an RVE
containing only one crack in each cracked ply is suitable
for representing the mechanical properties of the laminate
since PBCs are employed in this study.

With the RUC for a crack containing laminate defined,
its geometry can be created within a suitable FE software
package such as ANSYS. A number of three-dimensional
FE models are created for each laminate, for various crack
densities and damage states using an automated process
within the ANSYS APDL environment. For demonstration
purposes, a [0/90/�h]s laminate containing ply cracks in
multiple orientations will once again be considered. Each
ply is modeled using 20-node SOLID186 brick elements;
recall that a three-dimensional analysis is required to cap-
ture the constraining effects between adjacent plies and
the out-of-plane deformation behavior. The element mesh
is refined and the aspect ratio of the elements is main-
tained close to 1 in order to ensure a higher degree of accu-
racy. Mapped meshing is utilized in order to obtain a
smooth flow of elements through the thickness of each
ply. An example of a meshed RUC for a [0/90/�45]s half-
laminate is shown in Fig. 4. Note that a mesh sensitivity
analysis was performed and the 40,000 element mesh
shown provides a good balance between result accuracy
and solution time – improved mesh density has no bearing
on the simulation results. The planar crack pattern shown
in Fig. 3(b) was projected through each ply in the FE model
in order to allow for a mesh with proper element-to-
element connectivity. The nodes on the crack surface pairs
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are not connected within the corresponding plies, which
allows for proper displacement of the crack surfaces. How-
ever, the nodes on the interfaces between each ply are
coinciding, which ensures continuity between the plies
(i.e., no delamination).

The ply material considered in this study is a unidirec-
tional glass fiber/epoxy (E-glass, Epikote 828/NMA/BDMA
epoxy) system, with in-plane properties E1 = 46 GPa,
E2 = 13 GPa, G12 = 5 GPa, m12 = 0.3. Each unidirectional ply
is treated as a linear elastic transversely orthotropic mate-
rial, thus the remaining properties for the 3D ply elements
are: E3 = E2 = 13 GPa, G13 = G12 = 5 GPa, m13 = m12 = 0.3, and
G23 = 0.5E2/(1 + m23) = 4.64 GPa, where the Poisson’s ratio
in the isotropic cross-sectional plane is taken as m23 = 0.4.
The ply thickness for all laminates considered in this study
is 0.5 mm. Note that plies are taken as homogenized mate-
rials with the presented material properties, thus the fibers
and matrix are not explicitly modeled.

For thin laminates subjected to in-plane multiaxial
strains, in-plane periodic boundary conditions are applied
on the RUC in order to properly represent the local shear
response. Symmetric boundary conditions are not applica-
ble in this case, and are only suitable for uniaxial loading
(Singh and Talreja, 2009). Furthermore, the applied PBC
must ensure that the RUC considered here has proper dis-
placement and traction boundary conditions in order to
have continuity on its surfaces. Consider the RUC shown
in Figs. 3 and 4 for a [0/90/�h]s laminate containing ply
cracks. For the in-plane response PBCs must be applied
between the nodes on opposing faces of the RUC due to
multiaxial loading, mainly between face pair A and B and
between face pair C and D. This involves imposing dis-
placement constraints between these node pairs, and is
accomplished in ANSYS by defining appropriate constraint
equations as discussed by Lomov et al. (2007). For more
details regarding the constraint equations and their rela-
tion to the applied strains, as well as specific meshing con-
siderations, the reader is referred to Li et al. (2009).
Furthermore, since only half of the laminate is considered
due to symmetry, a symmetric boundary condition is
added to the face of the RUC that corresponds to the lam-
inate mid-plane. The process of applying the periodic
boundary conditions, as well as the additional constraints,
to the FE model of the RUC are automated using ANSYS
APDL programmable features.
3.2. COD and material damage constants

As indicated, the primary objectives for developing
micromechanical FE models are to define the averaged
CODs, ðDu2ÞðaÞ, as well as the material constant tensors,

aðaÞi

h i
and bðaÞi

h i
, corresponding to each damage mode for

a specific laminate. Although the micromechanical FE
models can also be used to define the crack sliding dis-
placements (CSD), they are not currently utilized by the
SDM model and therefore their consideration are left for
a future study. The CSD corresponds to the relative dis-
placement between the crack faces along direction 1 in
Fig. 1, which is analogous to Mode II crack displacement.
In order to define the averaged COD from the FE models,
the relative displacement of the nodes on the correspond-
ing crack surfaces must be considered. The CODs for a par-
ticular ply crack are averaged along the thickness of the
ply, i.e., along the crack height, which corresponds to the
z-direction in Fig. 3(a). Thus, the averaged COD is for dam-
age mode a is defined as:

ðDu2ÞðaÞ ¼
1
ta

Z ta=2

�ta=2
Du2ðzÞdz ð16Þ

where Du2 represents the separation of the crack surfaces
in the 2-direction. Numerically, Eq. (16) is applied to the
nodes on the corresponding crack surfaces through an
automated post-processing algorithm developed using
ANSYS APDL, which is invoked for a specific laminate.

Furthermore, for each laminate considered a number of
micromechanical FE models are developed with various
crack scenarios and cracks densities, which are analyzed
under various multiaxial strain conditions. The goal here
is to generate a database of COD data for each laminate,
or generally for each class of laminates, in order to allow
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for stiffness predictions and eventually damage evolution
predictions of multidirectional laminates. Again, due to
the availability of ANSYS APDL programmable features,
an algorithm is easily created to automate this process,
and therefore generate a large enough database for each
laminate. In order to correlate the data for each laminate
considered, the CODs are normalized by an effective strain
value, eeff, and the cracked ply thickness, ta. Therefore, the
normalized COD is defined by:

ðgDu2ÞðaÞ ¼
ðDu2ÞðaÞ
eeff ta

ð17Þ

The effective strain is again the transformed strain com-
ponent in the local lamina level coordinate system acting
normal to the corresponding crack surface, e22. This is the
strain component directly acting on the crack surfaces,
thus this strain transformation allows the model to con-
sider the multiaxiality of the problem. The form of
ðgDu2ÞðaÞ is in fact analogous to the constraint parameter
defined by Eq. (10). It should be noted that ðgDu2ÞðaÞ
depends only on the crack densities of the cracked ply
and in the constraining plies, but not on the applied strain
state or the cracked ply thickness. Therefore this is a con-
venient way to capture the crack displacements, and pro-
vides a means to easily correlate the data.

In order to evaluate the material constants for the dif-
ferent damage modes of a specific laminate, aðaÞi , the elas-
ticity tensor for the undamaged laminate, Co

pq, is defined
using CLT and the elasticity tensor for the damaged lami-
nate, Cpq, is evaluated from a series of micromechanical
FE simulations. In order to evaluate Cpq, a micromechanical
FE model is created with one damage mode present having
an arbitrary crack density, where the corresponding Da

term is evaluated using the corresponding expression from
Eq. (5)–(7). Three simulations are conducted using the
micromechanical FE model with different applied strains:
(i) exx, (ii) eyy, and (iii) cxy. For each simulation the volume
averaged stresses and strains from the RUC are calculated
using Eqs. (18a) and (18b), by considering the individual
element stresses, rij, and strains, eij, as well as the RUC total
volume, V.
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The parameter n is the total number of elements in the
RUC. The volume averaged stresses and strains are then
used to evaluate Cpq using Eq. (3). The aðaÞi terms corre-
sponding to the relevant damage mode can then be evalu-
ated using Eq. (8). This process is repeated for each damage
mode for the particular laminate. Note that if the nonlinear
damage model defined by Eq. (15) is invoked, additional
material constants, bðaÞi , must also be defined as is detailed
in Singh (2013).

4. Results and discussion

A schematic of the overall synergistic multiscale model-
ing approach is shown in Fig. 5, which highlights the com-
putational micromechanics component, as well as the
continuum and structural modeling scales. In this Section,
the computational micromechanical models will be vali-
dated and used to calibrate the SDM model before it is
employed for predicting stiffness degradation of damaged
laminates.

4.1. Validation of micromechanical FE model

In order to gain confidence in the developed laminate
FE models, their accuracy will be verified with regards to
the imposed periodic boundary conditions for representing
multiaxial loading states and shear deformational
response, and predictions for stiffness property reduction
with increasing crack densities. Consider the same FE
model shown in Fig. 4 for a [0/90/�45]s laminate with
cracks in each of the 0�, 90� and 45� plies, loaded with a
shear strain of cxy = 1%. The planar view of the RUC model
shown in Fig. 6 depicts the required displacement continu-
ity between these same face pairs. This can further be con-
firmed from the plot of the 2 � 2 array of the deformed
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periodic RUCs also shown in Fig. 6, for which the adjacent
boundaries are shown to be perfectly mated. The shear
strain contours shown in the 2 � 2 array also reveal the
continuity across the boundaries of the RUCs, which also
highlights the ability of the developed FE models to accu-
rately capture the laminate shear response. Although not
presented, the required traction continuity conditions on
the RUC boundaries are also satisfied.

Next, the RUC models are tested for their accuracy in
predicting the undamaged laminate homogenized material
properties. RUCs without any cracks are generated for
three of the laminates considered, mainly [�45]s, [0/90]s,
and [0/90/�45]s laminates. For each RUC, three simula-
tions are conducted with different applied strains: (i) exx,
(ii) eyy, and (iii) cxy, where for each simulation the volume
averaged stresses and strains are calculated using Eqs.
(18a) and (18b). The laminate engineering constants are
then evaluated from Eq. (11). In order to provide a basis
for comparison, CLT was also used to determine the
undamaged laminate properties. The computationally pre-
dicted undamaged laminate properties were within 0.5% of
the theoretical values, providing confidence in the applied
PBCs and the quality of the generated FE mesh.

Finally, using a similar procedure described in the pre-
vious paragraph, the accuracy of the micromechanical FE
models in directly predicting stiffness properties of the
damaged laminates will be verified against available
experimental data for [0/90]s and [0/90/�45]s glass fiber/
epoxy laminates subjected to uniaxial tensile loading
(Tong et al., 1997). Since the crack densities were reported
in the literature, the micromechanical FE models are tested
at these same crack densities in order to provide a direct
comparison. Plots of the normalized axial stiffness, Ex=Eo

x ,
and in-plane Poisson’s ratio, mxy=mo

xy, as functions of the
90� ply crack density for both laminates are shown in
Fig. 7. Clearly, the FE model predictions are in excellent
agreement with the experimental results for both cases.
These micromechanical FE models will be used later to
compare the accuracy of the analytical SDM model predic-
tions for multiaxial conditions.

4.2. Multiaxial effects on crack opening displacements

The micromechanical FE models will now be used to
calibrate the SDM model for each laminate considered. As
indicated in Section 3, a database of COD data was gener-
ated for the [�h]s, [0/90]s, [0/�h/90]s, and [0/90/�h]s lami-
nate configurations. For each class of laminate
configuration, various cracking scenarios involving multi-
ple crack densities and several multiaxial strain conditions
were analyzed. The loading cases considered here include
uniaxial tension, biaxial tension, coupled tension and
shear, with various strain magnitudes ranging from 0.25%
to 1.00%. Fig. 8 shows the variation of 90� ply COD for a
[0/90/�45]s laminate over the cracked ply thickness for
the indicated applied strain states. The same crack density
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was used for all plots, and only 90� ply cracks were
included in the model. The COD has a maximum magni-
tude at the center of the ply (i.e., zc/tply = 0), which is
expected. It is clear that the addition of shear strain has a
negligible effect on the magnitude of the 90� ply COD.
The addition of the tensile strain component eyy does how-
ever notably increase the COD as shown. This is due to the
negative contraction of the laminate in the z-direction.
Similar plots for CODs of 45� ply cracks are shown in
Fig. 9 for the same [0/90/�45]s laminate, for the case when
both 90� ply and 45� ply cracks are present. Here, the addi-
tion of the tensile strain component eyy does increase the
45� ply COD, as is also the case for the 90� ply cracks. Note
however that a further addition of shear strain causes the
COD to decrease significantly, which is a result of a
decreased strain component acting normal to the 45� ply
crack surface (i.e., e22). It is also interesting to note that
for a biaxial tensile strain scenario, the magnitude of the
45� ply COD is identical for different strain magnitudes
(i.e., exx = eyy = 0.5%, and exx = 0.75%, eyy = 0.25%), which is
due to identical crack surface normal strain components.
Although the results presented in Figs. 8 and 9 are intui-
tive, they are important for two reasons. First, they clearly
highlight the effects of multiaxial strain states on crack
surface displacement in multidirectional laminates, and
demonstrate that the micromechanical FE models properly
capture this behavior. The importance of the transformed
strain components in the local lamina coordinate system
for each particular damage model is also illustrated, as is
their influence on the magnitudes of the CODs. Secondly,
these results further confirm the accuracy of the developed
FE models and the imposed PBCs.

Since the average CODs are proportional to the applied
strain, they can be normalized as shown in Eq. (17) to pro-
vide a better way to correlate all the simulation data for
each laminate. Nevertheless, it is noted that the magnitude
of the normalized crack displacements depend upon: (i)
crack density for the particular crack of interest, and (ii)
crack density in the adjacent plies.

First, consider the [0/90]s cross-ply laminate containing
ply cracks in the 90� plies only. A plot of the normalized
90� ply COD as a function of the 90� ply crack density is



Table 2
Inverse sigmoidal fitting function coefficients from Eq. (19) for [0/90]s

laminate.

Damage mode c1 c2 c3

90� ply COD 2.67 0.70 1.75
0� ply COD 3.12 0.91 1.70
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Fig. 11. [0/90/�45]s laminate micromechanical FE prediction: normal-
ized 0� ply COD plotted as a function of crack density. The data has been
fitted using the inverse sigmoidal function.
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shown in Fig. 10(a). The normalized COD decreases as the
crack density increases due to the interactive shielding
effect between the neighboring cracks in a given layer.
An inverse sigmoidal function can be used to fit the nor-
malized COD-crack density data:

ðgDu2ÞðaÞ ¼
c1

1þ c2qc3
a

ð19Þ

It can be seen from Fig. 10(a) that this function accurately
captures the gradual decrease in ðgDu2ÞðaÞ for very low crack
densities, while also capturing the steep decrease at inter-
mediate to high crack densities. The corresponding fitting
coefficients, c1, c2 and c3, are listed in Table 2. It should
be noted that for the [0/90]s laminate the inverse sigmoidal
function coefficients are independent of the 0� ply crack
density, which implies that the 0� plies do not alter the
constraining effects on the normalized 90� ply CODs. This
is not surprising since the deformation of the 0� ply in
the direction normal to the 90� ply crack surfaces will
not depend on the 0� ply crack density. For cross-ply lam-
inates, this allows for the definition of a unique inverse sig-
moidal function for each damage mode that is independent
of the other damage modes. The normalized 0� ply CODs
and the corresponding fitting function are plotted in
Fig. 10(b), with the corresponding fitting coefficients listed
in Table 2.

Now consider a [0/90/�45]s laminate with cracking in
the 0�, 90� and 45� plies. The normalized 0� ply COD
obtained from the FE simulations are plotted in Fig. 11
along with the corresponding inverse sigmoidal fitting
function. Although the 90� ply is adjacent to the 0� ply,
the normalized 0� ply COD have no dependence on the
90� ply crack density due to the crack relative positions
(i.e., perpendicular). Note that the 45� ply crack density
has no bearing on the normalized 0� ply COD in this case
since these plies are not adjacent within the laminate. Also
note that this may not necessarily be the case if the 0� and
45� ply cracks were closer in proximity (i.e., if the 90� layer
was very thin). The corresponding fitting function coeffi-
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Fig. 10. [0/90]s laminate micromechanical FE prediction: (a) normalized 90� ply
The data in both plots have also been fitted using the inverse sigmoidal functio
cients are listed in Table 3. Moreover, the normalized 90�
ply COD are independent of the 0� ply cracks, but are influ-
enced by the 45� ply crack density as shown in Fig. 12. This
is due to the fact that any deformation in the 45� plies nor-
mal to the 90� ply crack surfaces will increase as the 45�
ply crack density, and thus the ply compliance, increases.
This decreases the constraining effect on the 90� plies
and thus increases the normalized 90� ply COD as shown.
The corresponding inverse sigmoidal fitting function
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Table 3
Inverse sigmoidal fitting function coefficients from Eq. (19) for [0/90/�45]s

laminate.

Damage mode c1 c2 c3

90� ply COD 0:0263q45 þ 1:2672 0:0192q45 þ 0:2021 1.8
0� ply COD 3.25 1.00 1.75
+45� ply COD 2.57 0.62 1.77
�45� ply COD 1.27 0.16 2.10
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Fig. 12. [0/90/�45]s laminate micromechanical FE prediction: normal-
ized 90� ply COD 3D plot.
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coefficients are listed in Table 3, which also includes the
fitting function coefficients for the normalized 45� ply
CODs. Crack displacements in the + 45� plies are not influ-
enced by the 0� and 90� ply cracks since these plies are not
adjacent (i.e., the +45� plies are at the laminate mid-plane).
Crack displacements in the �45� plies are slightly influ-
enced by the 90� ply crack density, but this is found to
be negligible.

4.3. SDM stiffness predictions

In order to highlight the predictive capabilities of the
SDM model for multiaxial conditions, the stiffness degra-
Table 4
Laminate material properties (CLT).

Laminate Eo
x (GPa) Eo

y (GPa) Go
xy (GPa) mo

xy

[�45]s 15.48 15.48 13.14 0.548
[0/90]s 30.25 30.25 5.00 0.13
[0/90/�45]s 26.20 26.20 9.10 0.30

Table 5
Damage tensor material constants corresponding to the listed damage mode for e

Damage mode [0/90]s [0/90/�4

90� 0� ±45� 90�

aðaÞ1 (GPa) 6.80 0.59 – 7.74

aðaÞ2 (GPa) 0.59 6.77 – 0.66

aðaÞ3 (GPa) 1.49 1.22 – 1.41

aðaÞ4 (GPa) 4.02 4.00 – 4.52

bðaÞ1 (GPa) 0.90 0.12 – 4.57

bðaÞ2 (GPa) 0.08 1.25 – 0.39

bðaÞ3 (GPa) 0.43 1.53 – 1.77

bðaÞ4 (GPa) 0.53 0.74 – 2.65
dation for the aforementioned laminates will be evaluated
using Eqs. (8) and (15). As shown in Fig. 5, the data
required includes: (i) the undamaged laminate properties
defined in Table 4, (ii) the damage parameters which are
computed from micromechanical FE simulations and are
presented in Tables 2 and 3, (iii) the material damage con-
stants aðaÞi and bðaÞi . The corresponding material constants
for each damage mode can be defined as outlined in
Section 3.2, which are listed in Table 5 for each laminate con-
sidered here. It should be restated that due to the proper
PBC invoked by the micromechanical FE models, it is pos-
sible to track the laminate shear behavior (Gxy), and thus
define the material constants a3 and b3. This is a key con-
tribution in the development of the SDM prediction model,
which is vital for including multiaxiality in the SDM model.
It is important to note that both CODs and damage con-
stants can also be computed from experimental data
whenever available, as was shown in previous studies
(Varna et al., 1999; Singh and Talreja, 2009). Furthermore,
it is noted here that while previous SDM models defined
CODs to be independent of crack density, that assumption
has been relaxed here so as to account for interactions
between stress fields of neighboring cracks. Note for the
predictions conducted here, only the COD is considered
in the SDM model. Also for the laminates containing ±h
ply cracks, the constraint parameters for the +h and �h
plies are averaged for the SDM predictions. This assump-
tion has previously been found to provide adequate results
since experimental evidence suggests that the crack densi-
ties in these plies tend to be quite similar (Singh and
Talreja, 2009). Furthermore, since experimental data for
multiaxial loading of laminates is currently lacking in the
literature, the micromechanical FE models are also used
to directly determine the laminate stiffness degradation.
This will provide a way to evaluate the accuracy of the
trends with the analytical SDM stiffness predictions for
multiaxial cases. The FE models for each laminate consid-
ered here account for specific multiple damage scenarios
with various cracks densities, thus they provide adequate
independent prediction data for comparison. Note that
experimental data would in fact be required in order to
validate the prediction model. A similar procedure defined
in Section 4.1 is followed for this purpose, however the
laminate FE models will now contain the appropriate ply
crack scenarios.
ach indicated laminate.

5]s [�45]s

0� ±45� 90� 0� ±45�

0.68 9.71 – – 8.94

7.80 9.50 – – 8.97

1.05 1.78 – – 1.83

4.61 6.15 – – 7.36

0.16 3.59 – – 0.20

�3.41 4.19 – – �0.10

4.64 �0.60 – – �0.51

�0.47 0.47 – �7.14
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Various evolving multidirectional damage states that
correspond to multiaxial loading conditions are analyzed
for the analytical SDM model predictions. For a [0/90]s

cross-ply laminate, two evolving damage states are consid-
ered as are listed in Table 6. The first damage state may
result from uniaxial loading in the longitudinal direction,
exx, as it describes cracks in the 90� plies only, but may also
occur from combined exx and cxy loading. The second evolv-
ing damage state corresponds to a biaxial loading condi-
tion where exx = eyy. Plots of the normalized engineering
moduli for damage state 1 are shown in Fig. 13, which
include the linear and nonlinear SDM model predictions,
as well as the computational FE data. It is clear from the
plots that the SDM predictions using the linear damage
terms in the constitutive model (i.e., Eq. (8)) correlate well
with the FE data. The nonlinear SDM predictions using Eq.
(15) show a slight improvement when compared to the lin-
ear SDM predictions for the in-plane shear modulus. Since
only 90� ply cracks are present, all engineering moduli,
except for the transverse modulus, undergo notable degra-
dation. Also, degradation of the in-plane shear modulus,
Gxy, occurs at a faster rate when compared to degradation
of the axial modulus, Ex, but at a slower rate than the major
Poisson’s ratio, mxy. Similar trends were also reported
Kashtalyan and Soutis (2013) for similar glass/epoxy
cross-ply laminates. Plots of the normalized engineering
Table 6
Evolving crack densities used for [0/90]s cross-ply laminate predictions.

Damage state 1 Damage state 2

q90 (/mm) q0 (/mm) q90 (/mm) q0 (/mm)

0 – 0 0
0.1667 – 0.1667 0.1667
0.2 – 0.2 0.2
0.25 – 0.25 0.25
0.333 – 0.333 0.333
0.5 – 0.5 0.5
0.6667 – 0.6667 0.6667
0.8 – 0.8 0.8
1.0 – 1.0 1.0
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Fig. 13. [0/90]s laminate predicted normalized engineering mo
moduli for damage state 2 are shown in Fig. 14. Once again,
the SDM predictions correlate very well with the FE model
data. Here, the axial and transverse moduli degrade with a
similar rate since the evolution of the crack density in the
90� and 0� plies is assumed to be concurrent as is shown in
Table 6. This is expected since the cross-ply laminate only
contains two outer 0� plies and two inner 90� plies of the
same thickness. Once again the Poisson’s ratio shows the
greatest degradation of all the engineering moduli. For
damage state 2, both the Poisson ratio and the shear mod-
ulus exhibit greater degradation compared to damage state
1. This is due to the existence of the 0� ply cracks which
enhances the degradation of these parameters as shown
in Figs. 13 and 14. This reveals the combined effect of the
two damage modes on the laminate properties, which also
demonstrates the multiaxial capability of the SDM model.

In previous SDM models, the stiffness degradation plots
were linear when linear damage terms were used in the
constitutive equations (i.e., Eq. (3)). Fig. 13(a) also includes
plots of the normalized axial stiffness and Poisson’s ratio
determined from the same linear model used by Singh
and Talreja (2009). The main reason for this predicted lin-
earity in the plots is that there was a single set of damage
constants, aðaÞi , for a particular laminate. In the present
study, the segregation of the different damage modes in
the constitutive equations allows for the definition of a dif-
ferent set of constants for each damage mode. This conse-
quently allows the SDM model to capture the nonlinear
stiffness degradation since the effects of each specific dam-
age mode have manifested through the stiffness predic-
tions. Furthermore, in previous studies the CODs and
corresponding constraint parameters were assumed to be
constant with increasing crack density, and thus the inter-
action between stress fields of neighboring cracks, which is
appreciable at medium to high crack densities, was not
accounted for. In this study, the model has been improved
by accounting for the variation of CODs as damage evolves
(see Eq. (19)). Nevertheless, this does increase the model
complexity by requiring necessary FE computations. Over-
all, the outcome of these changes in the definition of the
(b)
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Fig. 14. [0/90]s laminate predicted normalized engineering moduli as functions of q90 for damage state 2 (see Table 6).
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constraint parameters and the overall stiffness tensor is
that the nonlinearity in stiffness reductions can be cap-
tured even by the linear SDM model that considers first
order damage modes (see Figs. 13 and 14). For simplicity,
the predictions using the nonlinear SDM model will be
shown hereafter.

For the [0/90/�45]s quasi-isotropic laminate, the two
damage states considered are listed in Table 7. The first
damage state considered may result from either uniaxial
loading, exx, or from combined exx and cxy loading. The sec-
ond damage state corresponds to a biaxial loading condi-
tion where exx = eyy. Plots of the normalized engineering
moduli for both cases are shown in Figs. 15 and 16, respec-
tively. Once again, the analytical SDM model predictions
correlate very well with the FE data for both evolving dam-
age states. Fig. 15(a) reveals that the degradation of the
axial modulus for damage state 1 is initially very gradual
and caused solely by the 90� ply cracks. Once the 45� ply
cracks initiate the axial modulus degrades at an advanced
rate, in agreement with experimental observations (Tong
et al. (1997)) for a uniaxial loading case. A similar trend
is found with the Poisson’s ratio and the in-plane shear
modulus. Furthermore, the axial modulus degrades more
than the transverse modulus due to the contributions of
both 90� and 45� ply cracks. Since 90� ply cracks do not
Table 7
Evolving crack densities used for [0/90/�45]s quasi-isotropic laminate predictions

Damage state 1

q90 (/mm) q45 (/mm) q0 (/mm)

0 0 –
0.1667 0 –
0.2 0 –
0.25 0 –
0.333 0 –
0.5 0 –
0.6667 0 –
0.8 0.226 –
0.9 0.643 –
1.0 0.707 –
contribute to reduction in transverse modulus, it only
begins to degrade once the 45� ply cracks initiate, thus
leading to a less severe degradation for damage state 1.
For multiaxial damage state 2, the 45� ply cracks initiate
sooner and 0� ply cracks evolve concurrently with the
90� ply cracks, therefore there is greater degradation for
all engineering moduli as shown. The degradation of the
axial and transverse moduli occurs at a similar rate in this
case, which is due to the addition of the 0� ply cracks. The
0� ply cracks cause a similar increase in compliance in the
transverse direction as the 90� ply cracks cause in the axial
direction, which is expected since the laminate contains
the same number of 90� and 0� plies. Note that since the
0� plies are outer plies and only constrained on one side,
they have caused a slightly greater stiffness degradation
in the transverse direction when compared to the effect
of the inner 90� plies on the axial modulus. This reveals
the combined effect of the two damage modes on the lam-
inate properties, as well as the multiaxial capability of the
prediction model.

Finally, for the [�45]s angle-ply laminate only one
evolving damage state is considered since there is only
one effective damage mode. The evolving crack densities
in the 45� plies are defined as 0, 0.23, 0.35, 0.47, 0.707,
0.94, 1.13 and 1.28 mm�1, which can result from a uniaxial
.

Damage state 2

q90 (/mm) q45 (/mm) q0 (/mm)

0 0 0
0.1667 0 0.1667
0.2 0 0.2
0.25 0 0.25
0.333 0.235 0.333
0.5 0.707 0.5
0.6667 0.942 0.6667
0.8 1.13 0.8
0.9 2.57 0.9
1.0 2.82 1.0
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Fig. 15. [0/90/�45]s laminate predicted normalized engineering moduli as functions of q90 for damage state 1 (see Table 7).
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Fig. 17. [�45]s laminate predicted normalized engineering moduli as functions of q45.
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strain condition or any multiaxial strain state. Plots of the
corresponding normalized engineering moduli are shown
in Fig. 17, and again the analytical SDM predictions corre-
late very well with the FE data. The degradation of both the
axial and transverse moduli are significant since there are
no other plies reinforcing the laminate. Also, the axial and
transverse moduli degrade at the same rate which is
expected for the angle-ply laminate. The increase of the
Poisson’s ratio by approximately 30% at 1.2 mm�1 crack
density, as shown in Fig. 17a, may seem to be an unex-
pected result. However, a study by Varna (2008) has shown
that for a similar [0/±45/0]s laminate this was also the case,
which was supported in the same study by experimental
evidence. This is likely a result of shear modulus degrada-
tion and the fact that the axial and transverse moduli
degraded with the same rate, leading to an increasing Pois-
son’s ratio.
5. Model discussion

The SDM-based prediction model developed in this
study involved a number of complex augmentations in
order to include multiaxial effects. First, an additional
damage mode (i.e., cracking in the on-axis plies, a = 4)
was included in the SDM model. This was necessary in
order to account for additional damage scenarios that cor-
respond to practical multiaxial strain states. As a result, the
SDM model can now be used for any general symmetric
laminate with plies containing cracks oriented in multiple
directions, including the on-axis and transverse directions
as well as any off-axis direction. Secondly, the transformed
strain components acting on the corresponding crack sur-
faces in each ply of a laminate are considered in the model
formulation. This allows the model to account for any gen-
eral multiaxial strain state. The transformed strain compo-
nents were ultimately utilized to define the effective
strains, which were then used to define the constraint
parameters. This is a key contribution in this study since
the effects of multiaxiality were added directly into the
constitutive equations. It should be emphasized here that
the transformed strains acting normal to a crack surface,
and not the applied strains, must be used in the model for-
mulation since they contribute to the COD. Moreover, the
laminate constitutive equations were reformulated by seg-
regating the different damage modes. This has allowed for
the definition of a set of damage constants for each damage
mode for a specific laminate. As a result, the SDM model
can now accurately capture the nonlinear stiffness degra-
dation, and can be applied to any general symmetric lam-
inate containing multiple distinct damage modes. Finally,
the constraint parameters, which account for the coupling
effect between the different damage modes, are not
assumed to be constant. They are in fact dependent on
the evolving ply crack densities, and are represented by
continuous inverse sigmoidal functions. This also allows
the model to automatically capture the nonlinear stiffness
response.

With respect to computational micromechanics, the
task of defining a RUC for an arbitrary laminate with a spe-
cific damage scenario was also important as this allowed
for the application of periodic boundary conditions on
the micromechanical FE models. This was necessary not
only to ensure that the FE models provided a proper repre-
sentation of the physical problem, but also to allow for
consideration of the laminate shear response. Since the
prediction model accounts for degradation of the in-plane
shear modulus (i.e., a3, b3 – 0), nonlinear shear stress–
strain behavior can in fact be accounted for. The accuracy
of the different laminate RUC micromechanical FE models
were in fact validated with theory and experimental data.
In addition, the capabilities of the micromechanical models
to predict COD, as well as their ability to capture the con-
straint effects between adjacent plies for various multiax-
ial strain states was illustrated. This was also key for
including multiaxial effects into the SDM prediction model.

The developed multiaxial SDM model was then utilized
to predict stiffness degradation for three different classes
of laminate configurations involving distinct evolving
damage states, and correlations were shown with micro-
mechanical FE prediction data. Although the model accu-
racy has been demonstrated, development of the current
model is still in progress. One assumption made in the for-
mulation of the damage tensor, Eq. (2), and the constraint
parameters in the constitutive equations, Eq. (10), was that
the CSD (i.e., mode II) had so far been neglected. It is not
clear at this stage whether or not addition of the corre-
sponding CSD will greatly influence the stiffness predic-
tions of the SDM model. A study by Varna (2008) has
demonstrated that although neglecting CSD in the SDM
model formulation may lead to relatively small prediction
errors, CSDs may play a critical role in the shear deforma-
tion response for particular laminates. This paper is con-
cerned with the extension of the multiscale SDM
methodology for multiaxial deformation states, and thus
inclusion of CSDs into the formulation is left for a future
study.

In addition to the above model limitations, critical dam-
age such as delamination between adjacent plies and fiber
fracture is not considered by the current prediction model
as its scope has been limited to sub-critical intra-ply
matrix cracking. Delamination and fiber fracture have been
observed to occur much later than matrix cracking for
most practical laminates. Therefore, the SDM model is suit-
able for predicting stiffness degradation prior to the onset
of these critical damage modes. For many practical com-
posite structures, a critical loss in stiffness is sufficient to
define failure of a component. It should be noted that if
the current model is adopted for predicting failure of a
component in the sense that there is a loss of load-bearing
capacity, then these critical damage modes must be con-
sidered. Again, this is left for a future study.

The presented SDM model can in fact be used to predict
evolution of cracks in multidirectional laminates subjected
to multiaxial strains if a suitable damage evolution meth-
odology is incorporated. In this study, the damage evolu-
tion for multiaxial conditions was assumed in order to
showcase the stiffness prediction capabilities of the SDM
model. Predicting damage evolution under multiaxial con-
ditions is undoubtedly a very complex task which is lack-
ing in the literature. Damage evolution prediction is
addressed by the authors in Montesano and Singh (2015).
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Finally, the long-term goal is to utilize the SDM model to
predict damage evolution in practical composite compo-
nents subjected to local multiaxial strains. In order to do
so, the analytical SDM model presented here must also
be implemented into a commercial FE software package
as is described by Montesano and Singh (2014). This is
important for predicting the integrity and durability of
composite structures, and for designing structures that
are damage tolerant and fail-safe. This type of model can
also be integrated with a NDE technique for real-time
health monitoring of composite structures, which will lead
to safer and more cost-effective structures.
6. Conclusions

This paper briefly summarized the development of a
synergistic damage mechanics-based model for predicting
stiffness degradation in multidirectional laminates con-
taining sub-critical matrix cracks in multiple orientations.
The model overcomes the limitations of traditional contin-
uum damage mechanics-based models by utilizing compu-
tational micromechanics, in lieu of experimental data,
within a multi-scale framework to define the material con-
stants in the constitutive equations. The model is capable
of accounting for the effects of multiaxial strain states on
the laminate behavior, which was one of the main contri-
butions of this study. This was accomplished by developing
a physically accurate representation of the laminate micro-
structure and by invoking the appropriate periodic bound-
ary conditions in the corresponding computational FE
models. As a result, the model is now capable of predicting
the shear deformation response of composite laminates.
Furthermore, since the model is based on a three-
dimensional representation of the laminate microstruc-
ture, it accurately captures the constraint effects between
adjacent plies within the laminate. Therefore, the predic-
tion model is more robust and is suitable for predicting
stiffness degradation for any symmetric laminate contain-
ing any number of multidirectional damage modes
subjected to any arbitrary multiaxial strain state. This is
seen as an advantage when compared to existing models
reported in the literature. It is also worth noting that the
model can easily be implemented into a commercial finite
element software to predict stiffness degradation in com-
posite structures.

The predicted stiffness results were shown to correlate
well with the experimental data and with the computa-
tional FE data, which provides support for the capabilities
of the prediction model. It should however be noted that
the model is not fully developed at this stage. First, the
inclusion of crack surface sliding displacement in the
model and its influence on stiffness predictions must be
investigated. Although the SDM model currently does not
consider crack sliding for stiffness predictions, the micro-
mechanical FE models can determine these displacements
and will be used in a future study. Secondly, the model cur-
rently does not consider compressive damage modes. This
would also have to be investigated if the model were to be
invoked to predict stiffness degradation of practical com-
posite structures.
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