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Predicting the rate at which dislocations overcome obstacles is key to understanding the
microscopic features that govern the plastic flow of modern alloys. In this spirit, the
current manuscript examines the rate at which an edge dislocation overcomes an obstacle
in aluminum. Predictions were made using different popular variants of Harmonic Tran-
sition State Theory (HTST) and compared to those of direct Molecular Dynamics (MD)
simulations. The HTST predictions were found to be grossly inaccurate due to the large
entropy barrier associated with the dislocation–obstacle interaction. Considering the
importance of finite temperature effects, the utility of the Finite Temperature String (FTS)
method was then explored. While this approach was found capable of identifying a
prominent reaction tube, it was not capable of computing the free energy profile along the
tube. Lastly, the utility of the Transition Interface Sampling (TIS) approach was explored,
which does not need a free energy profile and is known to be less reliant on the choice of
reaction coordinate. The TIS approach was found capable of accurately predicting the rate,
relative to direct MD simulations. This finding was utilized to examine the temperature
and load dependence of the dislocation–obstacle interaction in a simple periodic cell
configuration. An attractive rate prediction approach combining TST and simple con-
tinuum models is identified, and the strain rate sensitivity of individual dislocation ob-
stacle interactions is predicted.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The outcome of dislocation–obstacle interactions can be highly sensitive to the nanoscale details of the interaction (Singh
and Warner, 2010; Singh et al., 2011). This motivates the use of atomistic modeling techniques to study these interactions. A
key challenge for the atomistic modeling approach is that dislocation motion across obstacles is a thermally activated event,
and hence rare in the time-scale accessible to direct atomistic modeling. This motivates the development and application of
indirect atomistic modeling techniques, aimed at computing the rate at which dislocations overcome obstacles.

One of the most common indirect atomistic modeling approaches to compute the rates of thermally activated events is
Harmonic Transition State Theory (HTST). HTST assumes that the reaction rate is governed by a single energy barrier that
separates the initial (unreacted) and final (reacted) states of the system. Further, HTST assumes that the potential energy
surface is quadratic at the initial and saddle configurations. This equates to approximating the activation entropy by the
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vibrational entropy and neglecting anharmonic effects such as thermal expansion (Vineyard, 1957), an approximation often
believed to be accurate for solids (Voter, 1997b; Delph et al., 2013). This approach produces a rate expression similar to that
of the Arrhenius equation involving a pre-exponential factor and an activation potential energy. The latter can be accurately
calculated using minimum energy path techniques such as the Nudged Elastic Band (NEB) method (Jonsson et al., 1998) and
the 0 K String method (Weinan et al., 2002). Calculating the pre-exponential factor requires solving two eigenvalue pro-
blems for the normal frequencies of the system near the initial and saddle configurations.

The eigenvalue problems are formidable for large systems and hence are often avoided in practice (Hirel et al., Aug 2008;
Gordon et al., 2008; Rodney, 2007; Zhu et al., 2004; Hara and Li, 2010). A common approach for avoiding the large ei-
genvalue problem is to approximate the pre-exponential factor by the normal frequency along the reaction coordinate at the
initial state (Hara and Li, 2010). This is equivalent to assuming that the entropy barrier is zero. Other approximations for the
pre-exponential factor such as the imaginary frequency of the saddle configuration (Rodney, 2007), continuum estimates
(Zhu et al., 2004), and the Debye frequency have also been used in the literature. Henceforth, we will refer to these ap-
proaches as Simplified HTST (SHTST).

Due to the approximations mentioned above, the HTST and SHTST approaches are not universally able to accurately
predict reaction rates in solids. A recent example is the prediction of dislocation nucleation rates, which has been shown to
have large entropic barriers due to anharmonic effects (Nguyen et al., 2011; Nguyen and Warner, 2012; Warner and Curtin,
2009; Hara and Li, 2010; Ryu et al., 2011a; Kim and Tadmor, 2014). In these cases, other approaches such as Parallel Replica
Dynamics (PRD) (Voter, 1998; Warner and Curtin, 2009), Hyperdynamics (Voter, 1997b, 1997a; Hara and Li, 2010; Baker and
Warner, 2012 and Transition State Theory (TST) combined with different free energy calculation techniques such as the
Finite Temperature String (FTS) method (Ren and Vanden-Eijnden, 2005, 2005b) and Umbrella Sampling (Frenkel and Smit,
2001) have been successfully used to predict rates from atomistic simulations. However, each of these methods is known to
have certain restrictions, which limit their accuracy and applications in a consistent manner. For instance, PRD provides a
speedup that at most scales with the number of replicas used and hence can only handle problems with high rates and small
activation volumes. The Hyperdynamics approach, on the other hand, needs an artificial potential that is application specific
and non-trivial to design. Finally, TST strongly relies on the choice of reaction coordinate and a dividing surface, i.e. a
transition bottleneck, which can be challenging to define.

To overcome the challenges involved in the above methods, path sampling techniques have drawn significant attention
in the biophysics and chemistry communities (Escobedo et al., 2009; Juraszek et al., 2012; Best, 2012; Bolhuis, 2003; Borrero
and Escobedo, 2006; Schwartz and Schramm, 2009; Basner and Schwartz, 2005). A major advantage is that these methods
do not need a carefully defined reaction coordinate and prior knowledge on the transition path and mechanism. They are
based on the fact that a transition is fully characterized by the transition path ensemble (TPE). In other words, the TPE
contains the information needed to predict all transition features such as reaction coordinate(s), rate(s), free energy profile
(s) and mechanism(s) (Peters and Trout, 2006; van Erp et al., 2003; Bolhuis and Dellago, 2011; Dellago et al., 1998a; Allen
et al., 2009; Dellago et al., 1999, 1998b). Comprehensive reviews of such methods can be found in Escobedo et al. (2009),
Moroni (2005), Bolhuis and Dellago (2011), Bertini and Reiher (2007), Bolhuis and Dellago (2009), and Dellago and Bolhuis
(2009). Nevertheless, these techniques have not so far been utilized for understanding phenomena underlying plasticity and
fracture in metallic systems. In this manuscript, the TPE approach known as Transition Interface Sampling (van Erp et al.,
2003) will be utilized to predict the rate at which an edge dislocation overcomes an obstacle.

This paper examines the application of HTST, TST, and TIS to predict the rate at which an edge dislocation overcomes an
obstacle. The manuscript begins with a brief description of the theoretical background of each method. Atomistic simulation
details are given in Section 3. In Section 4.1, HTST, TST, and TIS predictions are compared to that of direct molecular dy-
namics (MD) simulations for a benchmark problem. The entropy barrier of the problem and the validity of the harmonic
approximation are examined in Section 4.2. In Section 4.3, the rate calculation is applied to predict the strain rate sensitivity
(SRS) factor for an Al–Cu alloy, which can be compared to experimental measurements. The final section draws some
conclusions from the analyses and points out potential future directions.
2. Methods

2.1. Transition state theory

Transition State Theory (TST) provides an exact expression for the rate at which an ergodic system crosses a dividing
surface, SD, partitioning the configuration space into two sets a and b:
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through the dividing surface and
Z

Z
SD

a
represents the probability of the system being on SD relative to a (Glasstone et al., 1941;

Eyring, 1935; Wigner, 1938; Horiuti, 1938; Moroni, 2005; Bolhuis and Dellago, 2011). Often, a surface, S0, which does not
intersect SD and contains an initial configuration in a, is defined to express Eq. (1) in terms of a free energy barrier (Moroni,
2005; Vineyard, 1957):
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which can also be written as

σ σ σΔ ( ) = Δ ( ) − Δ ( ) ( )F T U T T S T, , , 5

with σΔ ( )U T, being the activation internal energy and σΔ ( )S T, the activation entropy. It should be noted that ν̃, ΔF , ΔU and
ΔS are not intrinsic properties of the system with respect to SD as they depend on S0. In practice, however, these quantities
are often not appreciably dependent on the choice of S0 so long as it is physically reasonable, e.g. passing through the
minimum energy state in a and normal to an appropriate reaction coordinate.

One challenge in computing the rate from Eq. (2) is that one is often interested in the transition rate between two
metastable regions ⊂A a and ⊂B b that do not necessarily partition the phase space and hence a transition cannot be
exactly characterized by crossing a hypersurface. In such cases, the flux through the dividing surface is an upper bound to
the flux from one metastable state to another because trajectories might recross SD multiple times before committing to B or
may not commit to B at all. Therefore, the TST rate formula, Eq. (2), can overestimate the actual rate of interest, i.e.

≤ [ ] ( )k k S 6AB ab D

A standard approach for dealing with the above challenge is the Bennett–Chandler (BC) TST method (Bennett, 1977;
Chandler, 1978; Moroni, 2005) whereby the flux through SD is modified such that only trajectories that reach the final state
are counted and multiple recrossings are counted only once. The latter is done by weighting forward and backward
crossings with different signs such that they cancel out. In practice, this amounts to scaling [ ]k Sab D by the probability, κ, that
each crossing towards B leads to a transition, meaning

κ≈ [ ] ( )k k S 7AB ab D

where κ = →∞limN
N
N

2 B , a.k.a. the transmission coefficient, is computed by starting a large number, N, of trajectories from an

equilibrium distribution on SD and counting the number, NB, that commit to B in a time ⪡ ( + )⁎t k k1/ AB BA . For the BC-TST
approach to be effective, the dividing surface, SD, must be chosen such that κ is close to one. In other words, SD must be a
bottleneck for the transition such that trajectories crossing it have a high probability of committing to B. Otherwise, an
infeasible number of trajectories are needed to compute κ accurately. It is worth noting that there are more efficient ap-
proaches for defining κ based on the effective positive flux formalism (Van Erp and Bolhuis, 2005), which avoids counting
positive and negative crossings by only counting the first positive crossing for effective trajectories (Bolhuis and Dellago,
2011).

A less demanding approach is the Variational TST (VTST) that assumes κ = 1 and chooses SD as the surface, SD
min, that

minimizes the transition frequency, ν = [ ]k S Zab D a (Vanden-Eijnden and Tal, 2005; Truhlar and Garrett, 1980). Considering the
TST rate formula, Eq. (2), SD

min is the surface that minimizes ∫ σ( )− ( )
e d x

SD

V
kBT

x

and hence has the highest free energy. In other
words, VTST assumes that the bottleneck characterized by SD that needs to be overcome for the transition to happen is the
activation free energy. In order to find this surface, one needs to compute a free energy profile along a properly chosen
reaction coordinate, λ, whereby SD

min can be taken as the level set, λ λ= ⁎, with the highest free energy. The Finite Tem-
perature String (FTS) method described in the next subsection can be used for this purpose.

The demanding task of computing a free energy profile for the above methods motivates the Harmonic TST (HTST)
approach, which avoids this task by assuming that the potential energy surface is quadratic at the initial and saddle con-
figurations. This assumption amounts to temperature independent material properties and is widely used for problems
involving solids. The method further assumes that the dividing surface corresponds to a potential energy ridge, SD

V
, between

A and B to express the transition rate as
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where νi
initial and νi

saddle are respectively the normal frequencies of the system in the initial configuration and the minimum
potential energy configuration within SD

V
, i.e. the saddle configuration. The product over the saddle point frequencies ex-

cludes the imaginary frequency in the direction of the reaction coordinate, i.e. normal to SD
V
, and hence all frequencies are

real. N is the number of atoms in the system and ΔV is the difference in the potential energy between the saddle and initial
configurations.

Solving the two eigenvalue problems required for Eq. (8) becomes prohibitively expensive for large systems. That is why
Eq. (8) is sometimes further simplified by assuming that the prefactor is equal to the normal frequency, ν⁎

initial, in the
direction of the reaction coordinate in the initial state:

ν≈ ( )⁎
− Δ
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V
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We will refer to this approach as the Simplified HTST (SHTST). Other choices for the pre-factor such a continuum esti-
mate, the imaginary frequency of the saddle point, or the Debye frequency have also been used in the literature (Hara and Li,
2010; Rodney, 2007; Zhu et al., 2004; Gordon et al., 2008).

2.2. Finite temperature string method

FTS is an algorithm for finding a reaction coordinate and computing the free energy profile along the coordinate. It has
been extensively used with TST to predict reaction rates (Nguyen and Warner, 2012; Nguyen et al., 2011; Ren et al., 2005a;
Qian et al., 2005). The method utilizes the idea of reaction tubes, a relatively high probability region in configuration space
that links A and B. Assuming that reaction tubes are thin and isolated, the method offers an algorithm for finding iso-
committer surfaces, i.e. surfaces where the probability that a trajectory reaches B before A is uniform, and the expected
configuration on each of them. A reaction coordinate is then defined as a curve (string) connecting the expected config-
urations. We refer the interested reader to references Ren and Vanden-Eijnden (2005), Ren and Vanden-Eijnden (2005b),
Ren et al. (2005a), Vanden-Eijnden and Venturoli (2009), and Weinan et al. (2007) for further details on the theoretical
background of the method.

The algorithm starts with an initial string connecting the initial and final states through a set of equally spaced inter-
mediate configurations (images) and a set of Voronoi cells centered at the images. Constrained sampling at constant
temperature is performed within each cell and the time averaged position associated with each cell is computed. Then, the
time averaged positions are used to update the string and Voronoi cells, while satisfying a smoothing condition and en-
forcing equal distance between images. Iterating over this process leads to a converged string and its associated Voronoi
cells. The Voronoi cells approximate the iso-committer surfaces and the images approximate the expected configuration
within them. The quality of the approximation depends on the discretization error and the sampling error. Further details of
the algorithm can be found in Vanden-Eijnden and Venturoli (2009) and Ren et al. (2005a).

FTS also offers an algorithm for calculating the free energy profile. The algorithm uses the global balance equation,
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to find the equilibrium probabilities, πα, of the cells α = … N0, , . The transition matrix, αα′k , can be computed from the
formula

=
Δ ( )αα
αα

′
′k

N
n t 12

n

by initiating a trajectory inside cell α and counting the number of times, αα′Nn , the trajectory enters cell α′ over n timesteps of
Δt . When the trajectory leaves the cell where it was initiated, which is α in this case, it is brought back to the last con-
figuration it had before leaving the cell. The estimate in Eq. (12) converges as the length of the trajectory goes to infinity, i.e.

→ ∞n . Further details can be found in Vanden-Eijnden and Venturoli (2009).

2.3. Transition interface sampling

Like TST based approaches, TIS aims to calculate a flux, but it does not require a transition state to be identified a priori
nor does it require a carefully chosen reaction coordinate and the computation of the free energy profile along the
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coordinate (van Erp et al., 2003). These advantages stem from the fact that the method directly calculates the rate using
actual trajectories of the system, i.e. samples of the Transition Path Ensemble (TPE). TIS measures the flux through a set of
hypersurfaces partitioning phase space rather than a single dividing surface, which can be hard to define. The TIS method is
based on the effective positive flux formalism (Bolhuis and Dellago, 2011; Van Erp and Bolhuis, 2005) which makes it less
sensitive to recrossings.

The first step in TIS is to partition phase space using a set of +n 1 non-intersecting interfaces, defined as level sets of an
order parameter, λ( )x , i.e. λ λ λ= { | ( ) = }x xi i , = …i n0, , . The order parameter, λ( )x , does not have to be associated with a
properly chosen reaction coordinate; it is sufficient that λ( )x characterizes the basins of attraction of A and B (Moroni, 2005;
van Erp et al., 2003; Van Erp and Bolhuis, 2005). As schematically shown in Fig. 2, each interface, λi, is closer to A than the
next interface, λiþ1, such that λ λ= A0 defines the boundary of the basin of attraction of A and λ λ=n B defines that of B.

TIS makes use of the effective positive flux formalism to express the transition rate as

ϕ
=

〈 〉

〈 〉 ( )
λ λ

k
h 13AB

, n0

where h is the indicator function and ϕλ λ, n0
is the effective positive flux from state A through interface λn (van Erp et al.,

2003). is the set of all phase points where the corresponding trajectories come from A without having visited B. A
transition happens when the system leaves , i.e. when the system enters B for the first time. The denominator, 〈 〉h , is the
fraction of time the system spends in . Therefore, Eq. (13) is the exact definition of rate, which is the number of effective
transitions from A to B divided by the total time the system spends in , in the limit of time going to infinity. It is also worth
noting that the equation is equivalent to the TST rate formula when λ λ= =SD A B, i.e. when the transition is characterized by
crossing a single dividing surface.

Calculating the rate from Eq. (13) is not feasible as it requires simulations that are long enough to capture a rare tran-
sition. To overcome this challenge, TIS relates the flux through an interface, λi, to that of the previous interface, λi�1, using
the recursive formula

ϕ ϕ λ λ〈 〉 = 〈 〉 ( | ) ( )λ λ λ λ −−
P 14i i, , 1i i0 0 1

where λ λ( | )−P i i 1 is the probability that a trajectory, coming from A, crosses λi provided that it has already crossed λi�1 (van
Erp et al., 2003; Moroni et al., 2004; Borrero et al., 2011). For instance in Fig. 2, λ λ( | )p 4 3 is the fraction of blue trajectories to
the red and blue trajectories. In simpler words, this equation relates the flux through two neighbor interfaces by using the
fact that only a fraction of trajectories that cross λi�1 make it to λi before going back to A. That fraction is the probability

λ λ( | )−P i i 1 . Using the recursive formula in Eq. (14), we can express ϕ〈 〉λ λ, n0
as
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and hence rewrite Eq. (13) as
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where the term
ϕ〈 〉

〈 〉
λ λ

h
0, 1 is the rate of transition from λ0 to λ1, which can be computed using direct MD simulations.

The trajectories needed for calculating the probabilities λ λ( | )+P i i1 cannot be generated using direct simulations for in-
terfaces that are far from A. A method commonly used for this purpose in the TIS literature is the so-called ‘shooting move’,
which is a Metropolis Markov Chain Monte Carlo (MCMC) algorithm. The theoretical and algorithmic details of the method
can be found in van Erp et al. (2003) and Bolhuis et al. (2002). The algorithm ensures generating samples from the
Boltzmann distribution by satisfying the detailed balance equation and using the Boltzmann distribution for deriving the
acceptance rule. Like other MCMC algorithms, the shooting move suffers from correlated samples, which slow down con-
vergence and impede exploring multiple reaction channels.

Path Swapping TIS (PSTIS) is one approach to attempt to overcome the correlation problem. It is based on the idea that
trajectories that have crossed an interface, λi, might also cross the neighboring interfaces, λi�1 and λiþ1. In other words,
trajectories in an ensemble, λ λ( | )+P i i1 , might also be in the neighboring ensembles, λ λ( | )−P i i 1 and λ λ( | )+ +P i i2 1 . This means an
ensemble can exchange samples, i.e. trajectories, with its neighbors. In that case, a new sample is added to each of the
ensembles without performing the most expensive step of the shooting move, i.e. the integration. This also alleviates the
correlation problem and increases the chance of exploring multiple reaction tubes. Further details on the algorithm can be
found in van Erp (2007).
3. Simulation details

The atomistic simulations were conducted using a modified version of the LAMMPS package and an angular dependent
embedded atom method (EAM) empirical potential developed by Apostol and Mishin (2011). The simulation cell consisted



Fig. 1. Simulation cell with an edge dislocation and a precipitate.
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of an edge dislocation in an FCC Al lattice and a mono-layer Cu obstacle representing a GP-zone. The simulation box, Fig. 1,
contained approximately 13,000 atoms in total, with 13 Cu atoms in the obstacle. The box was bounded by ( ¯ )110 , (111), and
(¯ ¯ )112 faces in the X, Y, and Z directions, respectively. The GP-zone lied on the (100) plane. An edge dislocation was created
with a line direction parallel to the Z-axis and = [¯ ]b 1/2 110 . Periodic boundary conditions were applied in the X and Z
directions. The system was loaded by applying the shear forces

τ τ
= = −

( )
f

A

N
f

A

N
,

17top
xy xz

top
bottom

xy xz

bottom

on the atoms near the top and bottom Y surfaces, while the displacements of the atoms in those layers are determined by
the dynamics of the system.

Direct MD simulations were performed with NVT dynamics where a Langevin thermostat with a damping parameter of
1 ps was used. The NVT ensemble was chosen because of implementation convenience. As proved in Ryu et al. (2011b), the
choice of the ensemble does not affect the activation free energy and hence the rate, but the entropy barriers are different.
Our analysis showed that the choice does not affect the conclusions drawn about temperature effects in Section 4.2. Further,
convergence studies with respect to the loading rate were conducted to ensure the fidelity of the rate predictions.

As mentioned in Section 2, HTST and TST rate expressions involve the potential and free energy barriers respectively. The
potential energy barrier ΔV is computed using the 0 K string method (Weinan et al., 2002), which is equivalent to the
Nudged Elastic Band (NEB) approach (Jonsson et al., 1998). The FTS method is used to obtain a reaction coordinate and
compute the free energy profile, as discussed in Section 2.2. Both versions of the string method require an initial string
connecting the initial and final configurations through a set of intermediate ones. This string has been generated by in-
terpolation using the Euclidean norm.

The set of interfaces for TIS was simply defined as the boundaries between Voronoi cells of the convergent string given
by the FTS method. The string was also used as the initial trajectory needed to start the shooting move. The simulations to
compute λ λ( | )+PA i i1 for each λi were performed in parallel. For each λi, five to ten 1 ns simulations, started at different seeds,
were performed. The transition flux through the first interface,

ϕ〈 〉

〈 〉
λ λ

h
0, 1 , was calculated using 50 independent direct MD

simulations started at different seeds.
Table 1
The predictions of the methods described in Section 2 for the average time, t̄ , for an edge dislocation to overcome an obstacle at
τxy¼200 MPa and T¼300 K.

Method t̄ (ns)

Direct MD 8.99
PSTIS 3.8
TIS 2.27
HTST 1.48�1014

SHTST 1.26�1011

FTS N/A



A B

λA λ1 λ2 λ3 λn-2 λn-1
λB

Fig. 2. Bottom: A schematic picture of the interfaces and trajectories involved in TIS calculations. The interfaces are the boundaries of the cells defined by
the FTS method. The blue and red trajectories have been described in Section 2. Top: Snapshots of the system as the dislocation overcomes the obstacle at
τxy¼200 MPa and T¼300 K. The left image is the initial configuration where the first partial dislocation has overcome the obstacle and the second partial
has not. The right image is the final configuration where the second partial has overcome the obstacle. The middle image is the center of one of the
intermediate cells. The images have been plotted by AtomEye (Li, 2003). Only atoms not in a perfect FCC stacking, i.e. having a large centro-symmetry
parameter, are shown. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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4. Results and discussion

4.1. Comparison of the methods

The performance of the methods described in Section 2 was examined by comparing their predictions of the average
time for a dislocation to overcome an obstacle, ¯ = −t kAB

1, to a benchmark obtained by direct MD simulations at τ = 200 MPaxy
and T¼300 K (Table 1). The choice of the load was based on the limited time-scale accessible to MD simulations and the
athermal critical shear stress, τ̂ = 300 MPa. In this case, the rate controlling event was observed to be the second partial
dislocation overcoming the obstacle through Orowan looping (Singh and Warner, 2013). Therefore, the results may be
generalized to other strong obstacles lying on other planes. Fig. 2 shows the initial, final and an intermediate configuration
of the system, plotted using AtomEye (Li, 2003). The benchmark was obtained by running 50 statistically independent direct
MD simulations and averaging the transition time, i.e. the time for the second partial to overcome the obstacle.

As shown in Table 1, HTST overestimated t̄ by about 13 orders of magnitude relative to the direct MD prediction. The
activation energy obtained by the 0 K string method was Δ =V 0.91 eV. The pre-exponential factor ν0 obtained by solving for
νi

initial and νi
saddle in Eq. (8) was × −1.3 10 s10 1. A SHTST prediction based on the Debye frequency of Aluminum, × −1.54 10 s13 1,

is also shown in the table, which overestimates t̄ by 11 orders of magnitude. As discussed in the next subsection, the
inaccuracy of the HTST predictions is due to the large entropic barrier due to thermal softening, which is neglected by the
harmonic approximation.

Our efforts to compute a free energy profile using FTS were frustrated. Although the method results in a converged
reaction coordinate (string) in the first stage of the algorithm, the constrained sampling of the second stage fails to obtain a
converged transition matrix. We believe that this problem stems from the failure of key FTS assumptions. First, reaction
tubes are assumed to be separated by energy barriers significantly larger than the thermal energy so that trajectories do not
leave the tube where they were initiated. Second, reaction tubes are assumed to be thin so that iso-committor surfaces can
be approximated by hyperplanes. A consequence of these assumptions is that the sampling trajectories must spend most of
their time near their respective cell centers. This means that the time averaged positions of the sampling trajectories will
form a smooth curve along the cells. A feature that was not observed in the simulations performed here.

It should be noted that failure in obtaining a converged transition matrix does not contradict a convergent string in the
first stage for two reasons. First, there is a smoothing term in the first stage that ensures the time averaged positions of
neighbor cells are smoothly connected; whereas, there is no such constraint when calculating the transition matrix. Further,
in the first stage, trajectories making a transition to a new tube do not remain there long enough to change their respective
cell centers. This is because trajectories are brought back to their cell centers as soon as they leave the cells. When calcu-
lating the transition matrix, on the other hand, trajectories are brought back to the last configuration they had before leaving
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Fig. 3. HTST (solid line) and TIS (dashed line) Arrhenius plots. HTST (squares) and TIS (circles) predictions have been computed at four temperatures:
233 K, 300 K, 373 K and 600 K. The average time, t̄ , is in picoseconds.
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their cells, which could be far from the cell centers.
TIS performs better than the other methods and provides a fairly accurate prediction of the average time, t̄ . This is

because TIS does not rely on prior knowledge about the transition such as the reaction coordinate, free energy profile,
transition state and the nature of the entropy barrier. Instead, it directly computes the flux characterizing the rate using real
trajectories of the system, i.e. samples of the Transition Path Ensemble (TPE). The success of the TIS approach and the failure
of the TST-FTS approach shows the importance of this level of generality.

We believe that a considerable amount of the error in the TIS prediction is due to the correlated nature of the trajectories
used to estimate λ λ( | )+P i i1 . As mentioned in Section 2, TIS makes use of an MCMC algorithm for generating trajectories of the
system and hence the convergence is slowed down by the correlated nature of successive samples. Moreover, the correlation
issue leads to most TIS trajectories lying in one reaction tube and not exploring others. As mentioned in Section 2, the Path
Swapping version of TIS, which we call PSTIS, has been proposed to alleviate the correlation problem and facilitate exploring
multiple reaction tubes. As shown in Table 1, the method proves to be effective at improving the time average prediction in
this problem.

4.2. Temperature effect

To gain insight into the energetics associated with a dislocation overcoming an obstacle and the performance of the
various rate prediction methods, the temperature dependence of the rate was examined. To this end, TIS rate predictions
were carried out at four temperatures and placed on an Arrhenius plot with HTST predictions, i.e. (¯)tln versus β = k T1/ B

(Fig. 3). The simulations were performed at a constant shear stress of τ = 120 MPaxy , with the potential energy barrier being
Δ =V 1.0 eV. The shear stress is about 3/4 of the yield strength in shear of underaged Al-4wt.%Cu, which is the closest Al–Cu
alloy to the cell considered here.

Interestingly, the TIS predictions follow a linear trend on the Arrhenius plot, with the same slope as the HTST prediction,
i.e. 1.0 eV. This implies that σΔ ( )U T, , ν σ˜( )T, and σΔ ( )S T, are likely to be temperature independent over the range examined,
considering that

ν σ σ β σ(¯) = − [ ˜( )] − Δ ( ) + Δ ( )
( )

t T
S T

k
U Tln ln ,

,
,

18B

from Eq. (5), ¯ =t k1/ TST, and Eq. (2). Accordingly, the y-intercept then represents the quantity ( )ν σ− [ ˜( )] + σΔ ( )Tln , S T
k

,

B
, which

can also be interpreted as the natural log of the prefactor in the Arrhenius equation for a process with a temperature
independent energy barrier. The linear fit of the TIS data on the Arrhenius plot has a y-intercept of �11.3. This value is
considerably below HTST intercept of 4.3 ( ν− ( )ln 0 ), and represents the main source of error in the HTST rate predictions.

Considering that ν σ˜( )T, can be easily computed from direct MD simulation, σΔ ( )S T, can be obtained. At T¼300 K, we
found ν̃ ≈ × −1.5 10 s11 1. Therefore, the entropy barrier is Δ =S k13.2 B, a value significantly beyond the 1–2 kB range asso-
ciated with the typical vibrational entropy of solids (Ryu, 2011; Hara and Li, 2010).

The large entropy barrier likely results from the nature of the dislocation–obstacle interaction and the temperature
dependence of the shear modulus and stacking fault energies (Yamakov et al., 2014). Specifically, the activated state involves
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an increased dislocation length relative to the initial state. This makes the free energy of the activated state more tem-
perature dependent than the free energy of the initial state, which is described by a large entropy difference between the
two states.

This idea is consistent with traditional continuum thermoelastic models, e.g. DiMelfi et al. (1976), Surek et al. (1973), and
Schoeck (1965). These models express the activation free energy as a function of the shear modulus, μ( )T , as

σ σΔ ( ) = Δ ( ) μ
μ
( )
( )F T V, T
0

(Argon, 2008; Ryu, 2011). Based on this expression for ΔF and the assumption that μ linearly decreases
with temperature and vanishes at the melting point Tm (Argon, 2008; Yamakov et al., 2014; Muraishi et al., 2002), the
activation entropy is modeled as

σ σΔ ( ) = Δ ( )
( )

S
V
T 19m

This expression is equivalent to the ‘thermodynamic compensation law’ or the Meyer-Neldel rule, which is an empirical
relation that has proved valid for many thermally activated processes.

Based on the melting point of Al-4wt.%Cu, Tm¼933 K (Meyrick and Powell, 1973), the entropy barrier estimated by Eq.
(19) is 12.4kB. This value is very similar to that obtained with Eq. (18) using the TIS approach. Furthermore, the model
describes a temperature independent activation entropy, consistent with the TIS predictions.

These results not only illuminate the powerful utility of the Meyer–Neldel rule for predicting the rate at which dis-
locations overcome obstacles, but they show that the large entropy barrier associated with the phenomenon can be ex-
plained by the anharmonic effect of thermal softening.

4.3. Load effect

The applied load is an important factor that controls the rate at which dislocations overcome obstacles. Macroscopically,
this effect manifests itself in the dependence of the plastic strain rate, ϵ̇p, on the applied stress, τ, and is characterized by a
strain rate sensitivity (SRS) factor, = τ∂

∂ ϵ̇m ln
ln p

, an experimentally measured quantity. ϵ̇p is proportional to the average velocity
of dislocations, v. In alloys that are governed by dislocation–obstacle interactions, such as underaged Al-4wt.%Cu, a first
order approximation of v under ordinary loading conditions is ≈ ¯v d t/ , with d being the average obstacle spacing in the glide
direction of the mobile dislocations. Thus, m can be estimated directly from the TIS results that provide the stress de-
pendence of t̄ .

Alternatively, m is commonly predicted from TST (Xu and Picu, 2007). Often, ν̃ is assumed to be stress independent and
the form of ΔF is chosen based upon specific features of the system (Kocks, 1975). This allows m to be written as

= − τ∂
∂Δm k TB F
ln . For a periodic array of weak obstacles, a widely used form for the stress dependence of ΔF is Friedel's model,

τ
τ

Δ = Δ − ^ ( )
⎜ ⎟⎛
⎝

⎞
⎠F F 1

200

3
2

where the activation energy at zero stress, ΔF0, is a fitting parameter and τ̂ is the athermal critical shear stress.
TIS rate predictions across six different stress levels at T¼300 K were examined within the context of the above as-

sumptions (Fig. 4). Specifically, the t̄ predictions were plugged into the TST rate formula, Eq. (2), and ΔF was solved for at the
different stress levels. The ΔF versus τ data is also shown in Fig. 4. Using Δ =F 1.7 eV0 , the data is described well by Friedel's
model across a wide range of stresses.
Fig. 4. Activation energy and average time vs load at 300 K.
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The SRS factor, m, associated with the TIS predictions is between 0.03 and 0.05 depending upon the applied load, noting
that similar results are obtained whether computing m directly from the TIS data or using the TST approach with Friedel's
model. Our predictions of m are almost an order of magnitude higher than those observed in room temperature experi-
ments on traditional aluminum alloys hardened by dislocation precipitate interactions, ≈m 0.005 (Muraishi et al., 2002;
Byrne et al., 1961). This disconnect suggests that the experimentally measured strain rate sensitivity of such materials is not
governed by the strain rate sensitivity of individual dislocation–obstacle interactions. This finding supports the hypothesis
proposed by Picu et al. (2009), Xu and Picu (2007), and Weiss et al. (2007), that the strain rate sensitivity of many en-
gineering alloys may instead by governed by the correlated motion of dislocations through a random field of obstacles. With
that said, the reader is reminded that artificial boundary effects associated with the small periodic simulation cell utilized
here might also be important (Szajewski and Curtin, 2015).
5. Summary and conclusions

This manuscript documents our attempt to use atomistic simulation to predict the rate at which dislocations overcome
obstacles. We began by considering the most common rate prediction approach for solids, HTST. For a small example
problem that could be solved with direct MD, we found HTST incapable of predicting the rate. Hypothesizing that the
harmonic approximation was the source of the error, the TST approach was then attempted. We were unable to predict the
rate with the TST approach due to our inability to calculate a free energy profile along a reaction coordinate identified with
the FTS method. We believe that the FTS approach was impeded by the failure of its key assumptions for this application.
This motivated us to explore the TIS approach, which utilizes actual reactive trajectories to predict the rate. The TIS approach
was found capable of accurately predicting the rate that dislocations overcome obstacles, relative to direct MD simulation.
To better explore the energy landscape and improve the rate predictions, a path swapping algorithm was ultimately utilized
within the TIS framework.

Having established the accuracy of TIS predictions for the application, the TIS approach was used to examine the tem-
perature dependence of the dislocation–obstacle interaction and the validity of the harmonic approximation. To that end,
TIS was used to generate an Arrhenius plot, which was compared to HTST predictions. The TIS plot was linear with the same
slope as the HTST prediction, but with a different intercept. This suggests that the phenomenon of a dislocation overcoming
an obstacle consists of a large entropy barrier that is temperature independent. The temperature dependence of the as-
sociated free energy barrier was found to be accurately described by standard continuum models that include a thermal
softening effect.

The TIS approach was also used to examine the stress dependence of the rate. The results were found to be well de-
scribed by TST and Friedel's model for the stress dependence of the free energy barrier. The strain rate sensitivity for a
dislocation to overcome a row of periodic obstacles in aluminum is predicted to be between m¼0.03 and m¼0.05 at room
temperature, a finding that can aid the quest to better understand the processes that control the strength of real-world
engineering alloys.

In closing, we have shown that the TIS approach is capable of accurately predicting the rate at which dislocations
overcome obstacles and that simple continuum models are capable of describing the temperature and stress dependence of
the rate. The latter finding establishes an attractive approximate approach for predicting the rate, i.e. using TST in careful
combination with the simple continuum models examined here. For other problems where this is not the case or known,
path sampling techniques such as TIS are attractive alternatives to TST-based approaches as they offer a much higher degree
of generality for the same amount of implementation efforts.
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