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Mechanical properties of monolayer penta-graphene
and phagraphene: a first-principles study

Hao Sun,†a Sankha Mukherjee†b and Chandra Veer Singh*ab

Two new graphene allotropes, penta-graphene and phagraphene, have been proposed recently with

unique electronic properties, e.g. quasi-direct band gap, direction-dependent Dirac cones and tunable

Fermi velocities. However, their mechanical properties have not been fully studied yet. In this work, we

have performed extensive density functional theory calculations to evaluate the mechanical properties

of these two materials and compared with graphene, graphane, and pentaheptite. Our simulations show

that the ultimate tensile strength (UTS) and the strain corresponding to UTS in both penta-graphene

and phagraphene are smaller than that of graphene. A complete set of nonlinear anisotropic elastic

constants up to the fourth order have been determined for these two allotropes using the tenets of

continuum mechanics by fitting the stress–strain responses under uniaxial and biaxial tension until

the point of fracture. We propose a new physical explanation for penta-graphene’s negative Poisson’s

ratio based on the atomic de-wrinkling mechanism, driven by the local Hellman–Feynman force on

each atom. Additionally, we used charge density plot and virtual Scanning Tunneling Microscopy

images to analyze the initiation of fracture under uniaxial and biaxial tensile loading in these two

materials. The charge density plots reveal that the charge density in sp3 bonds is lower than that in

the sp2 bonds. In phagraphene, all the broken bonds were found to belong to the largest carbon ring

in the structure.

1. Introduction

Recently, two new graphene allotropes, penta-graphene1 and
phagraphene2 have been proposed with remarkable material
properties that can outperform graphene. For example, unlike
graphene, the nanotubes made of penta-graphene are semi-
conducting regardless of their chirality.1 Additionally, penta-
graphene’s quasi-direct band gap1 can be useful for optoelectronic
and photovoltaic applications.3 The structure of phagraphene is
composed of rings containing five, six, and seven atoms, which
is topologically similar to hybrid boron nitride.4 Recent research
suggests that phagraphene possesses direction-dependent Dirac
cones with tunable Fermi velocities which are robust against
externally applied strain.2 Interestingly, hybrid boron nitride
also possess unique electronic and magnetic properties, such
as, semiconductivity with notably reduced band gap compared
to the normal boron nitride nanoribbons.4 Furthermore, with
the knowledge of mechanical properties of phagraphene and
penta-graphene, we can tailor their electronic properties by strain

engineering.5 Nonetheless, since these materials are ultrathin due
to their two-dimensional (2D) nature, they are susceptible
to external influences, including mechanical deformation.5

Therefore, an in-depth understanding of their structure–property
relationship is necessary for practical application.

Efforts have been made to understand the structural
stability6 and the effects of doping7 and functionalization8 on
the mechanical properties of penta-graphene. Zhang1 et al.
performed density functional theory (DFT) calculations and
reported that, (a) penta-graphene is strong with an ultimate
tensile strength (UTS) of 20 N m�1 under biaxial tensile loading,
and (b) it possesses a negative Poisson’s ratio (n). The negative
Poisson’s ratio of penta-graphene was attributed to the Coulombic
repulsion between the nearby sp3 bonds – a mechanism observed in
isolated CH4 molecules.1 In recent years, research has been under-
taken to understand the effect of doping7 and functionalization8

on the mechanical properties of penta-graphene. Using DFT
calculations, Zhang7 et al. created penta-CN2 by replacing the
sp3 hybridized carbon atoms in penta-graphene with nitrogen
atoms, which resulted in a significantly increased axial Young’s
modulus (E) of 319 N m�1, much higher than that of pristine
penta-graphene (B263.8 N m�1 8). This improvement in axial
stiffness was attributed to the stronger interatomic bonding
between the carbon and nitrogen atoms than the covalent
carbon–carbon bonds in pristine penta-graphene.9 Li et al.8
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reported that the electronic and mechanical properties of penta-
graphene can be tuned by functionalizing it with hydrogen
and fluorine, e.g. converting the material from semiconducting
to insulating and turning its negative Poisson’s ratio into
positive. The structure of phagraphene can be considered as a
defective form of graphene. Graphene with defect has a much
lower UTS than that of pristine graphene.10–13 Graphene allotropes,
like OcGr, can be considered as graphene-like structure with
defects. Previous results show that it process mechanical properties
weaker than graphene.14 Similarly, the structure of phagraphene
can also be considered as a defective form of graphene. Therefore,
attempts need to be made to evaluate the mechanical properties
of phagraphene.

The nonlinear elastic constants of graphene and its allotropes’
can be evaluated by fitting their nonlinear elastic stress–strain
curves to higher order fitting polynomials of strain.15–17 These
fitting constants are useful in studies related to the thermal
expansion, phonon–phonon interaction, and finite element
analysis of these materials. However, despite the importance,
a study of the nonlinear elastic constants of phagraphene and
penta-graphene, is still missing. In this paper, we performed
extensive theoretical analysis to understand the structure and
mechanical relations of penta-graphene and phagraphene.
Using first-principle DFT computations, stress–strain responses
under uniaxial and biaxial loading were simulated, and the
complete set of anisotropic nonlinear elastic constants were
estimated by fitting the stress–strain data to the fourth order
continuum elasticity theory. Additionally, we proposed a new
explanation based on an atomic de-wrinkling mechanism for
understanding the origin of negative Poisson’s ratio in penta-
graphene. The paper ends by analyzing the fracture behavior in
penta-graphene and phagraphene using charge density analysis
and virtual Scanning Tunneling Microscopy (STM) images.

2. Methodology

Plane wave based DFT calculations were performed using the
Quantum Espresso software package18 and Perdew–Burke–
Ernzerhof (PBE) exchange–correlation functional19 within the
generalized gradient approximation (GGA). Kinetic energy cut-
offs of 60 Ry and 480 Ry were used for the calculation of
wavefunction and charge density, respectively. The convergence
criterion for the self-consistent field (SCF) procedure was set to
1.0 � 10�6 Ry. Brillouin-zone integrations were performed using
a Monkhorst–Pack grid20 of 13 � 13 � 3 k-points. A 20 Å vacuum
layer was added to the simulation box to avoid interaction
between adjacent images. Each system was initially relaxed with
variable cell sizes using conjugate gradient minimization techni-
que until the magnitude of the residual Hellman–Feynman force
on each atom was less than 0.001 Ry per Bohr. After the initial
relaxation, the unit cells (marked by pink in Fig. 1) were subjected
to different magnitudes of uniaxial, equal-biaxial strains in the
x and y directions (i.e. 1 and 2 directions, respectively). The
structures were deformed by incrementally dilating the unit
cells along the loading direction and applying an equal affine

transformation to the atomic positions, followed by an energy
minimization routine. During this relaxation step, the cell
dimensions were fixed to preserve the overall strain loading
on the deformed configuration. The atomic positions, charge
density, and virtual STM were visualized using the XCrySDen21

package.
True (Cauchy) stress was calculated for each optimized

structure from the pressure tensor. Cauchy stress was converted
to the 2nd Piola-Kirchoff (P-K) stress S (N m�1) through the
deformation tensor (F) using the relation22

S = JF�1s(F�1)T, J = det(F). (1)

We assumed a thickness of 3.45 Å for phagraphene, same as
graphene.23 For penta-graphene, the thickness was assumed to
be 4.65 Å (given the monolayer thickness is 3.45 Å and 1.2 Å is
the interplanar distance).

The nonlinear elastic constants were evaluated by performing
a least-squares fitting to the 2nd P-K stress–strain data following
the continuum description of nonlinear elasticity of graphene
proposed by Wei et al.15 The mechanical response of graphene
allotropes under uniaxial Lagrangian strain (Z) along the x
direction (i.e., 1 direction) can be represented using the Voigt
notation, which is given by

S1
1 ¼ C11Z1 þ

1

2
C111Z21 þ

1

6
C1111Z31 þ

1

24
C11111Z41 (2)

S1
2 ¼ C12Z1 þ

1

2
C112Z21 þ

1

6
C1112Z31 þ

1

24
C11112Z41 (3)

S1
6 = 0 (4)

In the case of uniaxial loading along the y axis, where Z1 = 0,
Z2 Z 0, Z6 = 0, the mechanical response is given by

S2
1 ¼ C12Z2 þ

1

2
C111 � C222 þ C112ð ÞZ22

þ 1

12
C1111 þ 2C1112 � C2222ð ÞZ32 þ

1

24
C12222Z42

(5)

Fig. 1 Schematics of the atomic structures for penta-graphene and
phagraphene. Unit cells are shown in pink. Side views of penta-graphene
are shown on the top of this figure with three planes of atom (P1, P2, and P3).
The atoms in P2 plane are marked in green.
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24
C22222Z42 (6)

S2
6 = 0 (7)

Under equal-biaxial loading, the constitutive equations are
given by

Sbiax
1 ¼ C11 þ C12ð ÞZþ 1

2
2C111 � C222 þ 3C112ð ÞZ2

þ 1

6

3

2
C1111 þ 4C1112 �

1

2
C2222 þ 3C1122

� �
Z3

þ 1

24
3C11111 þ 10C11112 � 5C12222ð

þ 10C11122 � 2C22222ÞZ4

(8)

Sbiax
1 = Sbiax

2 (9)

Sbiax
6 = 0 (10)

eqn (2)–(10) are valid for finite strains under arbitrary in-plane
tensile loading when the bending stiffness is negligible. It is,
however, important to note that in paper by Wei’s et al.,15

eqn (6) assumed C11 = C22, which is not accurate for systems
with significant anisotropic mechanical behavior. Therefore,
in order to accommodate the anisotropic effects, we evaluated
C22 separately.

3. Results and discussion
3.1 Tensile stress–strain relationship

Cranford6 found that the pentagonal ring in penta-graphene,
which is composed of sp3 hybridized bonds, undergoes an
irreversible transformation under the influence of mechanical
strain or temperature and converts into a purely hexagonal ring
composed of sp2 hybridized bonds. In our study, we considered
the mechanical deformation of penta-graphene and phagraphene
at ground energy state. The second P-K stress versus Lagrangian
strain responses of penta-graphene and phagraphene for in-plane
uniaxial and biaxial tensile loading are shown in Fig. 2(a) and (b).
Since penta-graphene is symmetric to 901 rotations, its mechanical
behavior in the in-plane directions are identical. For strains smaller
than 0.1, both the materials were found to follow a linear
stress–strain response. For strains larger than 0.1, the 2nd
Piola-Kirchoff (P-K) stresses behaved nonlinearly with increasing
strains. Both S1

1 and S2
2 in penta-graphene are negative due to its

negative Poisson’s ratio. Fig. 2(c) and (d) represent the strain
energy increase in penta-graphene and phagraphene as a function
of Lagrangian strain for multiaxial tensile deformation. In both the
materials, for strains smaller than 0.1, the strain energy obeys a
quadratic relation with Z. This result suggests that a linear
relationship exists between stress and strain for small deformations
(Zo 0.1). However, for Z4 0.1, nonlinear elastic behavior becomes
dominant in both the materials.

The nonlinear stress–strain responses presented in Fig. 2(a)
and (b) are qualitatively similar to theoretical calculations
reported for graphene and its allotropes.15–17 As described

Fig. 2 Stress strain curves for penta-graphene (a) and phagraphene (b). Energy–strain responses for penta-graphene (c) and phagraphene (d).
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earlier, we fit simulated stress–strain data to eqn (2)–(10) to
find out the nonlinear elastic constants. Subsequently, these
constants are used to calculate the E and n using the following

E ¼ C11
2 � C12

2

C11
; n ¼ C12

C11
: (11)

The magnitudes of UTS, the strain corresponding to UTS point
(Zu), E, and n for penta-graphene, phagraphene, graphene,15

graphane,24 and pentaheptite17 are listed in Table 1. Graphene
possesses ultrahigh E and UTS compared to the rest of the
materials. Interestingly, for x-uniaxial tension, graphane and
pentaheptite have a higher Zu than graphene.

The differences in the mechanical properties of different
graphene allotropes can be attributed to the differences in their
area densities and the nature of the C–C bonds25,26 (see Table 1).
Both pentaheptite17 and phagraphene possess area densities
smaller than graphene, leading to fewer bond connections and
consequently a smaller UTS and E. Although, penta-graphene
has a higher area density than graphene due to its three-layered
structure, 80% of its carbon bonds are sp3 hybridized, whereas
the carbon–carbon bonds in graphene are sp2 hybridized.
Graphane has a honey-comb like structure similar to graphene,
but, all the carbon atoms are sp3 hybridized due to the C–H
bond. The UTS and E in graphene, penta-graphene, and graphane
decrease as the percentage of sp3 bonds increase (graphene 4
penta-graphene 4 graphane). Recently, using ab initio molecular
dynamics simulations, Li et al.8 attached hydrogen atoms to the
carbon atoms in penta-graphene with sp2 bonds, which resulted in
a structure with 100% percent sp3 hybridized bonds. As a result,
the Young’s modulus of the structure reduced from 263.8 N m�1

to 205.5 N m�1 for hydrogenated penta-graphene. These findings
are in line with our observation that sp3 hybridization deterio-
rates the mechanical properties of graphene allotropes.

Penta-graphene possesses a negative Poisson’s ratio (�0.078)
which is much lower than that of graphene (0.177 for armchair
direction and 0.173 for zigzag direction17). This behavior has
been attributed to the bond rotation of the sp3 bonds by Zhang1

et al. However, in penta-graphene bond rotations are restricted
due to the geometrical constraints imposed by neighboring
carbon atoms. Our simulations did not show any significant
bond rotation up to a strain of 0.2 under both uniaxial and
biaxial loading (Fig. 5). Recently, single-layer black phosphorus
which has a puckered structure has been reported to possess
a negative Poisson’s ratio under uniaxial deformation in the

out-of-plane direction.27 Wrinkled graphene papers also have
negative Poisson’s ratio.28 During tensile stretching, the de-wrinkling
and unfolding processes give rise to a negative Poisson ratio in
the graphene papers. Similarly, in penta-graphene, the carbon atoms
are not coplanar, this nano-wrinkled structure introduces similar
local flexion which resists deformation in the transverse direction.
In our simulations, de-wrinkling mechanism was observed in
penta-graphene during tensile deformation. Fig. 3(a) and (b)
represent the atomic configurations and residual Hellman–
Feynman force on each atom in penta-graphene for a uniaxial
tensile strain of 7%. The length and the direction of the green
arrows represent the relative magnitudes and the directions of
the Hellman–Feynman forces, respectively. These forces determine
the direction of movement of each atom during deformation. It
can be seen from Fig. 3(c) that during deformation, due to the
Hellman–Feynman force, the atoms in the P1 and P3 planes move
towards each other in the z direction and move away from each
other in the y-direction, causing expansion of the unit cell in the
direction perpendicular to the applied deformation and con-
traction in the out-of-plane direction.

3.2 Nonlinear elastic constants

The fifteen fourth-order elastic constants of penta-graphene
and phagraphene were calculated by fitting the simulated
stress–strain responses to eqn (2)–(10). The magnitudes of the
elastic constants of these two structures are listed in Table 2.
Additionally, for comparison, we presented the values of the
nonlinear elastic constants of graphene15 in Table 2. It can be
seen that the C111 and C222 are negative for all the allotropes. As
a result, the structures show mechanical strain softening for
increased values of strain. Our calculations also predict that
among all the allotropes, Graphene possess the largest C11

(358.1 N m�1 15), while penta-graphene has the lowest C11

(275.71 N m�1). This observation is in sync with the fact that
penta-graphene has the lowest UTS and Young’s modulus while
graphene has the largest UTS, and E. We calculated the pressure-
dependent second-order elastic constants (C̃11, C̃12) of penta-
graphene and phagraphene using the following expressions29

~C11 ¼ C11 � C111 þ C112ð Þ 1� n
E

P; (12)

~C12 ¼ C12 � C112
1� n
E

P; (13)

Table 1 The values of UTS and corresponding Zu for penta-graphene and phagraphene, compared with graphene

Graphene15 Penta-graphene Phagraphene Graphane24 Pentaheptite17

x-Axial UTS (N m�1) 30.36 23.51 25.39 21.8 25.72
y-Axial UTS (N m�1) 28.56 23.51 25.57 19.1 24.08
Biaxial UTS (N m�1) 32.01 25.40 24.8 21.2 —
x-Axial Zu 0.22 0.18 0.18 0.25 0.24
y-Axial Zu 0.18 0.18 0.16 0.17 0.19
Biaxial Zu 0.22 0.22 0.16 0.25 —
Area density (Å�2) 0.379 0.453 0.368 — 0.367
Poisson ratio n 0.169 �0.078 0.255 0.076 0.253
E (N m�1) 348 277.99 292.92 249.3 292.26
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where P is the in-plane pressure. It can be seen from Fig. 4 (a), in
both the structures, the second-order elastic moduli increased
linearly with pressure. The rate of increase of elastic moduli is
the highest in graphene compared to penta-graphene and
phagraphene. We found that the Poisson’s ratio in graphene
and phagraphene decreases with pressure, unlike in penta-graphene
wherein Poisson’s ratio increases with pressure (Fig. 4(b)). The
Poisson’s ratio of phagraphene (0.41–0.28) is larger than that
of graphene (0.28–1.6) and penta-graphene (�1.7 to �0.078)
for the entire pressure range studied here. Since a perfectly
incompressible material has a Poisson’s ratio of 0.5, phagra-
phene is observed to conserve volume better than graphene
and penta-graphene. Generally, for most two-dimensional
structures, the absolute value of Poisson’s ratio decreases with
an increasing in-plane pressure, which suggests that 2D materials
are more easily compressed than sheared for increased in-plane
pressures.

3.3 Fracture mechanics

According to previous research, in graphene, atomic bonds that
make a small angle or are parallel to the direction of loading are
susceptible to failure.17 In penta-graphene, the sp3 hybridized
bonds break first under both uniaxial (Fig. 5(a)) and biaxial
(Fig. 5(c)) tensile loading. A complete fracture of the entire
structure occurs after the rupture of the first bond. To understand
the fracture behavior in depth, we utilized charge density and
virtual STM images; virtual STM images can probe unoccupied
regions of electrons and show contrasting behavior for the broken
and the unbroken bonds.30 As shown in Fig. 5(b), for atoms in the
P1 plane in penta-graphene under uniaxial loading, the relative
electron density in the broken sp3 bonds are smaller than the
unbroken bonds. On the other hand, under biaxial tension, the
unbroken sp2 bonds have falcate shapes. Isolated atoms with
failed sp3 bonds appear as a circle in the STM images. Since, for
any given quantum number, electrons in the s orbitals are nearer
to the nucleus than the electrons in the p orbitals. Generally, the
more s character the bond has, the shorter the bond length is and
the more tightly held the bond will be. Geometrically, the sp3

bonds in penta-graphene (1.55 Å) are longer than the sp2 bonds
(1.34 Å), and the magnitude of charge density at the center of a sp3

bond is smaller than that of a sp2 bond. In Fig. 5(f) we show the
charge densities in the P1 and P4 planes of penta-graphene.
The maximum value of the charge density at the center of the
sp2 bonds in the P1 plane is 0.3695 Å�2, which is much higher
than that of the sp3 bonds in the P4 plane (0.2768 Å�2). A higher
charge density indicates a stronger interaction in sp2 bonds
compared to sp3 bonds, resulting in higher bond strength. As a
result, the magnitude of the stress needed for fracture initiation
is smaller for graphane (composed of sp3 hybridized bonds
only) compared to penta-graphene.

In phagraphene, for uniaxial loading in the x direction (see
Fig. 6(a) and (b)), three bonds fail simultaneously. During
y-uniaxial tension (see Fig. 6(c) and (d)), two bonds brake,
as a result, three carbon rings combine into a single ring.

Fig. 3 (a and b) Show the atomic configurations and residual Hellman–Feynman force on each atom in penta-graphene for a uniaxial tensile strain of 7%.
(c) The distance between the P1 and P3 planes in penta-graphene as a function of applied biaxial. The inset shows the unit cell of penta-graphene with
atoms in P2 plane marked in green. Under the influence of biaxial strain, the atoms in the P3 plane tends to move in the �z direction (move down), whereas
those in the P1 plane tends to move in the +z direction (move up).

Table 2 Nonlinear elastic constants (N m�1) of penta-graphene and
phagraphene from DFT calculations, compared with graphene

Graphene15 Penta-graphene Phagraphene

C11 358.1 275.71 313.21
C12 60.4 �21.43 79.72
C22 358.1 274.03 328.91

C111 �2817 �1568.3 �2538.4
C112 �337.1 45.0851 �679.7
C222 �2693.3 �1486.1 �2786

C1111 13416.2 �3685 13811
C1112 759 1655.6 5372.8
C1122 2582.8 533.07 1212.5
C2222 10358.9 �5633.1 20 486

C11111 �31383.8 67 620 �76 024
C11112 �88.4 �16 680 �25 997
C11122 �12960.5 �3496 �27 871
C12222 �13046.6 �27 662 �29 786
C22222 �33446.7 86 763 �169 270
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Under biaxial tension (see Fig. 6(e) and (f)), the broken bonds
cut all the units and the whole structure fails, completely.
In all the cases, all the broken bonds belong to the original

largest carbon ring. Therefore, the largest ring is the weakest
unit in phagraphene.

Fig. 4 (a) Second-order elastic moduli (b) and Poisson’s ratio as a function of the in-plane pressure for graphene, penta-graphene, and phagraphene.

Fig. 5 (a) The atomic configuration of penta-graphene after a uniaxial
strain of 0.2 in the x-direction. The dashed lines show the fracture pathways.
(b) Virtual STM image of the atomic configuration shown in subfigure (a).
(c) The atomic configuration of penta-graphene after a biaxial strain of
0.2 (d) Virtual STM image of atomic configuration in subfigure (b) with a bias
voltage 0.136 eV. (e) Position of P1 and P4 plane in penta-graphene shown
by dotted line. (f) Charge density plot of penta-graphene in the P1 plane
(f) and P4 plane (g). The ‘‘Scale’’ legend represents the relative density of
electrons, the unit for electron density is 1 Å�2.

Fig. 6 (a) The atomic configuration of phagraphene after x-uniaxial strain of
0.2. (b) Charge density plot of the atomic configuration shown in subfigure (a).
(c) The atomic configuration of phagraphene after y-uniaxial strain of 0.17.
(d) Charge density plot of the atomic configuration shown in subfigure (c).
(e) The atomic configuration of phagraphene after biaxial strain of 0.17.
The dashed lines show the fracture pathways. (f) Charge density plot of the
atomic configuration shown in subfigure (e). The broken bonds are
emphasized by black rectangles. The ‘‘Scale’’ legend represents the relative
density of electrons, the unit for electron density is 1 Å�2.
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4. Conclusion

We characterized the mechanical behavior of monolayer penta-
graphene and phagraphene under multi-axial loading using
DFT calculations. Simulated results predict that both of the
structures have lower UTS and E compared to graphene. A
fourth order continuum elasticity theory was used to evaluate
fifteen nonlinear elastic constants of the materials based on the
simulated stress–strain data. The negative Poisson’s ratio in
penta-graphene was found to originate from the de-wrinkling of
different atomic planes during tensile deformation. Charge
density and virtual STM images were utilized to determine
the fracture pathways in both the materials. Both the structure
either underwent a structural transition generating larger carbon
rings or failed completely after the breakage of the first bond. In
penta-graphene, the sp3 bond is more vulnerable to failure than the
sp2 bond due to longer bond length and lower charge density. In
phagraphene, the weakest unit is the largest carbon ring, which is
the origin of fracture under multi-axial loading.
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