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An asymptotically exact cross-sectional model coupled with geometrically nonlinear one-dimensional
(1D) theory is developed for a thin composite strip in the presence of defects. Two types of defects are
considered: intralaminar cracks and interlaminar cracks. Model development is based on the dimensional
reduction of laminated shell theory to nonlinear 1D theory using the variational asymptotic method. The
cross-sectional nonlinearity accounts for matrix cracks, quantified in terms of crack density and delam-
ination, quantified in terms of the delamination width. For modeling intralaminar cracks continuum
damage mechanics based framework is used along with computational micromechanics to account for
intralaminar cracks in laminate plies in different orientations. Delamination modeling follows a method-
ology adapted from the sublaminate approach. The model developed is used to investigate the effect of
defects on the trapeze effect – nonlinear axial-twist coupling in strip with Winckler kind of layup. It was
found that cracks in transverse plies enhance the trapeze effect; on the contrary, symmetric edge mid-
surface delamination leads to decrease in the coupling effect. This contrarian behavior of the two types
of defects on the trapeze effect is explained on the effect these defects have on the various cross-sectional
coupling stiffness terms influencing the coupling behavior. Model predictions are presented for strip stiff-
ness degradation due to matrix cracks and delamination.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Helicopter rotor blade degrees of freedom involves pitching,
flapping and lead-lag motion. Traditionally, these motions have
been accommodated by fully articulated bearing and hinge based
tail-rotor hub design [1]. Bearing and hinge based rotor design is,
however, mechanically complex and unnecessarily transfers the
centrifugal loads to the hinges and the rotor hub. More recently,
this traditional form of design has been replaced by bearingless
and hingless flexbeam based rotor design [2]. In bearingless and
hingless design, flexbeams, made of fiber reinforced composite
materials, are typically used to connect diametrically opposite
rotor blades through the hub to take on the centrifugal force. The
flexbeams are typically strip like structures and provide the neces-
sary elastic coupling to accommodate the various motions of the
rotor blade. These structures are consistently subjected to high
magnitudes of centrifugal and bending loads and hence they are
designed such that their thickness decreases away from the rotor
hub. This is achieved during the manufacturing by ply-dropping
technique. High centrifugal and bending load and discontinuities
at internal ply-drop locations lead to intra- and inter-laminar
cracks in these structures. The focus in this work is to model
intra- and inter-laminar crack(s) in anisotropic pretwisted strip
like configuration typically used as flexbeam structures. The aim
is not to model an exact flexbeam structure but to develop a gen-
eral methodology by considering an anisotropic pretiwsted strip,
which can be eventually used to model a flexbeam with ply-
drops. It is envisaged that the proposed model provides a unified
approach to account for damage within the Variational Asymptotic
Method (VAM) based strip analysis to capture the overall stiffness
degradation – at lamina and strip level and deformation.

Multiple matrix cracking, also known as ‘‘intralaminar crack-
ing”, is usually the first form of damage observed during experi-
ments on composite laminates subjected to uniaxial loading [3].
Although it does not cause laminate failure instantly, it causes
degradation in the stiffness properties of a structure and provides
pathways for other forms of damage, such as delamination. The
subject of intralaminar cracking has been quite extensively studied
in the past few decades [4–10]. For cross-ply laminates, in partic-
ular, the analysis approaches have become quite mature. In
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general, matrix crack modeling strategies can be divided into the
following: (i) shear lag based approaches [11]; (ii) variational
methods [5,12,13]; (iii) crack opening displacement (COD) and
crack face sliding displacement (CSD) models [14–17]; and (iv)
continuum damage mechanics [18–21]. Initially, most of the work
was limited to cross-ply laminates. This focus on cross-ply lami-
nates led to the development of 1D shear-lag approach. Subse-
quently, there have been number of improvement and
refinements to the 1D shear-lag approach [22,23]. Variational
approach based methods typically considered 2D boundary value
problem to determine the statically admissible stress fields and
their perturbation within the lamina in the undamaged and
cracked state [24], respectively. COD and CSD based approaches
can be accommodated within the laminate theory to determine
the laminate stiffness and compliance matrix along with the
hygrothermal coefficients. Challenge, however, is in using the
above approaches in a structural analysis involving matrix crack
progression with deformation since they involve explicit represen-
tation of the underlying laminate microscale description. An exten-
sive review highlighting the development of various models and
their relative merits and demerits is presented in [25].

Continuum damage mechanics (CDM) approach offers an alter-
native compared to the other methods discussed above. Models
based on CDM approximate an underlying cracked laminate with
an equivalent homogenized continuum. Talreja [4] was among
the first to propose a CDM approach to model damage in fiber rein-
forced composites. The model proposed additive decomposition of
the constitutive matrix of laminate containing matrix cracks into
constitutive matrix of undamaged laminate and a matrix account-
ing for damage leading to the overall reduction in the stiffness of
the laminate. Subsequent models, for example [26–29], focused
on including the effect of ply level matrix crack development and
evolution, constraint effect and nonlinear behavior between dam-
age parameter and crack density. For general laminates, only a
few models, such as [26] can yield satisfactory predictions for stiff-
ness changes due to transverse cracking. The model by Li et al. [26]
is a modification of Talreja’s continuum damage model [18] and it
carries the necessary physical basis and predictive capability, in
addition to the simplicity necessary for numerical implementation.
In the present work, we shall use CDM approach for calculating
stiffness changes in lamina due to multiple matrix cracking. The
damage variables and constants appearing in the CDM model will
be determined from computational micromechanics using finite
element method (FEM) as proposed by Singh and Talreja [30].
The homogenized material properties of the laminate will then
be used in the strip analysis.

Interlaminar cracking or delamination between two layers of
the laminate is quite detrimental and may directly cause compo-
nent failure. It is thus very important to develop analysis proce-
dures to account for this damage mode. It should be noted that
matrix cracks happen at the material level while delamination is
a structural level failure. Hence it is only appropriate that delami-
nation effects are captured during structural modeling of the strip.
Many analytical and numerical models are available in the litera-
ture for composite laminates with delaminations. A detailed
review about delamination modeling in beams and their effects
on the structural dynamics are provided by Della et al. [31]. It is
observed that the majority of the available methods/techniques
can be categorized into two classes: (a) region approach; (b) layer-
wise approach. Further, the region approach model can be divided
into free and constrained mode models. Mujumdar et al. [32] made
the comparison between these modes with experimental data and
brought out the salient features between these two approaches.
For complete perspective on delamination model, the reader is
referred to Kim et al. [33] for quasi 3D finite element method of
delamination modeling, Wang [34] for free mode with classical
beam theory, Barbero et al. [35] and Saravanos et al. [36] for
layer-wise approach, Shen et al. [37] for detailed experimental
results, Armanios et al. [38] for sublaminate approach, Li et al.
[39] for analytical model to understand the extension twist cou-
pling, Chakraborty et al. [40] for 3 noded finite element model,
Averill [41] and Kim et al. [42] for zig-zag theory and Cho et al.
[43] for higher order zig-zag theory. More recently, Carrera unified
formulation [44,45] was used to investigate the dynamic behavior
of laminated composites with partial delaminations [46].

Over the last decade variational asymptotic method has
emerged as a very effective and efficient mathematical framework
to model dimensionally reducible composite structures like beams,
strips, plates and shells [47–49]. The mathematical framework was
originally proposed by Berdichevsky [50] and later adapted to
structural engineering problems by Hodges [51,52]. A primary
advantage of the framework is that it is free from ad hoc assump-
tions prevalent in other dimensionally reducible structure models.
Due to the inherent variational form of the problem formulation it
is easy to implement the framework in FEM. Analytical modeling
can be easily developed for structures with simple geometries.
The mathematical framework has demonstrated the capability to
capture nonlinear phenomenon like trapeze effect [53] in strips
and Brazier effect [54] in thin walled hollow tubes; additionally,
beams having material and geometrical nonlinearity have been
successfully modeled [55,56]. Recently, VAM based models have
also been used to study the effect of damage in strips [57] and rotor
blades [58].

The primary focus in this work is on the development of a mod-
eling strategy to include the effects of both matrix cracks and
delamination in pretwisted anisotropic strips. The aim is to inves-
tigate the trapeze effect in the presence of these defects. Trapeze
effect in damaged strip has not been discussed much except in a
few studies, e.g. [59,60,57]. Even in these studies it is limited to
investigating the effect of only delamination on the trapeze effect
in pretwisted strips.

In the present work, the structural model is based on the vari-
ational asymptotic method. Matrix cracks and delamination are
introduced into the model through ply stiffness degradation and
sub-laminate approach, respectively. Continuum damage mechan-
ics coupled with computational micromechanics is adopted to cap-
ture ply stiffness degradation. The degraded stiffness terms are
then carried forward in the strip modeling. Delamination is natu-
rally captured by the sublaminate approach within the VAM
framework. Nonlinear cross-sectional analysis is limited to the
case of anti-symmetric Winckler layup strips in this work. This is
not a limitation of the model or the mathematical framework.
The layup restriction is primarily to reduce the mathematical com-
plexity and demonstrate through analytical solutions the capabil-
ity of the model to capture the damage effects on the trapeze
behavior. The final result obtained from this formulation contains
both linear as well as nonlinear stiffness terms that account for
both intralaminar and interlaminar cracks.
2. Stiffness degradation model for matrix cracking in a general
laminate

A lamina has low stiffness properties transverse to the fiber
direction. Therefore, when a composite laminate made from a
mix of on-axis and off-axis plies is loaded in tension, the plies
transverse to the loading axis begin developing intralaminar
cracks. These ply cracks usually grow unstably through the ply
thickness and are stopped at the interface between plies of differ-
ent orientations. A typical crack, once fully developed through the
ply thickness, starts developing along the fiber directions travers-
ing the entire lamina width. After the initiation of first ply crack,
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more and more cracks start forming in-between existing cracks,
and quickly form a somewhat periodic array of fully developed
cracked surfaces parallel to the fiber direction in a given lamina.
A representative schematic of this phenomenon is shown in
Fig. 1 illustrating the ply cracking in a ½0=90=� h=þ h�s laminate
on tensile loading along x1 direction.

The immediate effect of ply cracks is to cause reduction in the
thermoelastic properties of the laminate. Many analytical models
have been developed to describe the thermoelastic constants of
the damaged laminate as a function of crack density. The contin-
uum damage mechanics (CDM) model proposed by Li et al. [26],
which is applicable for laminates with an arbitrary layup, is used
in the present work. There are also three major differences
between this approach and the CDM based method proposed by
Talreja [4] that makes it amenable for the problem considered in
this work. In this approach it is not necessary to define a tensor-
valued damage as an internal variable in a continuum mechanics
formulation considering the whole laminate as a representative
volume element. Such a representation involves tedious determi-
nation of damage-related material constants for every laminate
under consideration either through experiments or computational
micromechanics. The model proposed by Li et al. [26] overcomes
this difficulty by an approach that defines a scalar damage param-
eter at the lamina level capable of accounting the influence of adja-
cent laminae of different fiber directions. Further, it obviates the
necessity to consider empirical factor necessary to take into
account the constraints on the cracked surface displacements
depending on the lamina position in a laminate. The model pro-
posed by Li et al. [26] also does not lead to all the effective material
properties being proportional to crack density and thus applicable
to a wider range of crack density. Following the ideas proposed in
[26], the cracks are considered to be periodic and fully developed
through the lamina thickness and width. In such a lamina, the stiff-
ness properties of the cracked laminate is determined to be
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In Eq. (1), N is the total number of laminae in the layup and Qk

the stiffness matrix of the kth layer lamina transformed in the lam-
inate (global) coordinate system. Lamina stiffness transformation
is given by

�Qk ¼ T�1QkRTR
�1 ð2Þ

where,

Qk ¼ Q0
k þ QD

kwk ð3Þ
Fig. 1. The 3D geometry of repeating volume element of multi-directional laminate
containing ply cracks in multiple direction.
Here, T is the coordinate transformation matrix for a lamina with
orientation h with respect to the loading direction and is given by
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In Eq. (3), wk is the damage parameter that is related to the non-
dimensionalized crack density dk for the kth lamina. The parameter
g is a layup-dependent constant and will depend upon the lami-
nate material as well as the layup sequence. It is defined as the
ratio of relative changes in the in-plane shear modulus and the
transverse modulus, as a result of damage and is given by

g ¼
G12�G0

12

G0
12

E2�E02
E02

ð7Þ

The relationship between the damage parameter
ðw ¼ 1� ðE2=E

0
2ÞÞ of a cracked lamina and the crack density d is

established using the micromechanical cracked laminate analysis.
A function as shown below relates the damage parameter and
the non-dimensionalized crack density.

wk ¼ 1� expð�pÞdk ð8Þ
where, p is a constant to be determined either from experiments or
computational micromechanics.

In order to capture the damage parameter ðwkÞ and determine
its correct value, three dimensional finite element analysis, as a
micromechanical tool, is used. The micromechanical cracked lam-
inate modeling approach is based on the computational microme-
chanics technique. It is used to determine the numerical value of
the damage parameter corresponding to each damage mode for a
specific laminate; the sole aim of the three dimensional analysis
being to capture the constraining effects of the adjacent plies on
a cracked ply of interest. The finite element analysis used here
employs periodic boundary conditions (PBC) to mimic the behavior
for the entire laminate.

To conduct the computational simulations corresponding to
each laminate configuration a micromechanical FE model, contain-
ing sub-critical ply cracks, is generated. For a particular crack con-
taining laminate, an appropriate RVE representing the material
properties, ply specific geometry, and the orientation of the cracks
for the given damage state needs to be defined. Furthermore, to
invoke the PBCs, the RVE needs to be a repeating unit cell(RUC),
which can be a difficult task, but not impossible.

Once the RUC for a crack containing laminate is defined, its
geometry can successfully be created by using a suitable FE pack-
age such as ANSYS. To implement the model for various crack den-
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sities and damage states, a number of three-dimensional FE models
are created using ANSYS-APDL environment. It must be remem-
bered that a three-dimensional analysis is required to capture
the constraining effects between adjacent plies and the out-of-
plane deformation behavior.

To evaluate the effective properties of a lamina, three FE simu-
lations are conducted corresponding to applied strains along (i)
�11; (ii) �22; and (iii) �12. For each simulation the stresses and
strains from the RUC are averaged upon the volume of the element,
and are calculated by considering the individual element stresses,
rij, and strains, �ij, as well as the RUC total volume, V. Thus, the
average stress and strain components are given by,

rij ¼ 1
V

Z
V
rijdV ð9Þ

�ij ¼ 1
V

Z
V
�ijdV ð10Þ

For the homogeneous composite material, the relationship
between average stress and average strain is

rij ¼ Cijkl�kl ð11Þ
The components of the stiffness tensor C are determined using

Eq. (11) from the volume averaged stresses and strains determined
from the three sets of FE simulations described above.

From the components of the stiffness tensor obtained above, the
material engineering moduli for a damaged laminate can be
obtained by the following relationships.

E1 ¼ C11C22�C2
12

C22

E2 ¼ C11C22�C2
12

C11

G12 ¼ C66

ð12Þ

In Eq. (12), terms of the fourth order stiffness tensor are
expressed in Voigt notation. The process is repeated for ply cracks
in each orientation for the particular laminate. Using this approach
it is possible to obtain the evolution of the damage parameter with
respect to the crack density. This evolution form is used to deter-
mine the constant p from curve fitting. The value of p is not unique
but is dependent on material and layup sequence used in a lami-
nate. Numerical results from the computational micromechanics
approach used to determine the value of p are given in Section 3.

Following the procedure described above, the effect of matrix
cracks can be accounted in any structural level model through
the constitutive relation of individual plies. On the other hand,
interlaminar cracks or delaminations do not directly affect the
individual ply properties. It is known to affect at the scale of a
structure. For the problem at hand, it should affect the cross-
sectional stiffness properties of the strip. Next section describes
the general process of including delamination in a composite strip
within the VAM framework based on the sublaminate approach.
3. Cross-sectional analysis of a delaminated anisotropic pre-
twisted strip

A 1D model for a thin pretwisted anisotropic strip in the pres-
ence of delamination (Fig. 2) is developed in this section. The 1D
model for the strip is obtained by dimensionally reducing the 3D
problem into a nonlinear cross-sectional analysis and a nonlinear
problem along its longitudinal axis. This is possible in structures
where one or more of the geometrical feature of the strip is suffi-
ciently small compared to the other. The small parameters relevant
to the strip under consideration are: (i) width to length ratio
ðdb ¼ b=lÞ; (ii) thickness to width ratio ðdh ¼ h=bÞ; and (iii) the
width times pretwist per unit length ðdt ¼ bk1Þ. VAM procedure
involves the representation of the strain energy of the strip in
terms of the small parameters. This allows for a systematic order
analysis of the strain energy functional. In the asymptotic process
the strain energy functional is approximated by successively
neglecting the higher order terms, whose contribution to the over-
all energy is relatively negligible. This process is carried out until
difference in stationary points, i.e. kinematic field variables, corre-
sponding to successive asymptotic steps are negligible in an
asymptotic sense. The model development, in this work, is limited
to strips with Winckler layup for the ease of enumeration of the
methodology and determination of closed form analytical solu-
tions. A brief summary of the key steps involved in the mathemat-
ical formulation is described here.

Distinction should be made between the delaminated and the
healthy part of the strip during the development of the kinematics.
This is achieved by following the sublaminate approach. Regions
above and below the delamination are represented by superscript
1 and 2, respectively. The 3-D kinematics of the pretwisted strip is
developed following the procedure enumerated by Danielson and
Hodges [61] and directly adapted from Hodges et al. [53] and Gur-
uprasad et al. [57]. The 3-D strains expressed in terms of the 2-D
mid-surface strains and curvatures by following the relation:

Cð1;2Þ
ab ¼ �ð1;2Þab þ ðx3 � h

4Þqð1;2Þ
ab . Here, �ð1;2Þab are the mid-surface mem-

brane strains and qð1;2Þ
ab are the middle surface bending curvatures

of the top and bottom sublaminate. Explicit expressions for the
first order 2-D strains and curvatures are determined to be:

�ð1;2Þ11 �c11 � x2j3 þ k1x22j1 þ x22j2
1

2
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3 j2
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11 � j2
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3;22

2qð1;2Þ
12 � �2j1

ð13Þ

The 2-D strains and curvatures in Eq. (13) contain both linear
and non-linear terms. Nonlinear terms arising due to moderate
local rotations are highlighted with an underline. In Eq. (13), c11
and ji’s are the 1-D strain measures and wi’s are the warping dis-
placements. Where necessary, the delaminated and undamaged/
healthy regions of the laminate will be identified in the equations
by superscript ðdÞ and ðhÞ.

The 2-D strains and curvatures are grouped as

�ð1;2Þ ¼ ½�ð1;2Þ11 �ð1;2Þ22 2�ð1;2Þ12 qð1;2Þ
11 qð1;2Þ

22 2qð1;2Þ
12 �.

The laminate stiffness matrix of the healthy part of the cross-
section is given by

Kh ¼ Ah Bh

Bh Dh

" #
ð14Þ

and that of the delaminated sublaminate is given by

Kd ¼ Ad 0

0 Dd

" #
ð15Þ

It should be noted that since Winckler layup is considered the
sublaminates above and below the delamination contain symmet-
ric laminate layup sequence. The stiffness terms used above are
defined as



Fig. 2. The strip model shows geometry and coordinate system. The cross-sectional view of edge delamination is highlighted.
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The 2D strain energy density of the strip is determined as,

U1D ¼
Z �a
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�ð1Þ

T
Kd�ð1Þdx2 þ

Z a
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T
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where, �ab and qab are the strains and curvatures as defined in Eq.
(13), ‘a’ is the location of the delamination from the origin as shown
in the Fig. 2. Total delamination size along the x2 direction is 2ld,
where ld ¼ ðb=2Þ � a.

The strain energy functional is extremized with respect to the
field variables - warpings. The final form of the governing differen-
tial equations obtained can be presented in terms of the general-
ized forces and moments, corresponding to the healthy and
damaged part of the strip, as below

Nð1;2ÞðdÞ
22 ¼ 0

Nð1;2ÞðdÞ
12 ¼ 0

Mð1;2ÞðdÞ
22 ¼ 0

ð19Þ

Nð1ÞðhÞ
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22 ¼ 0

ð20Þ

It was observed that the governing equilibrium equations have
a form similar to the expressions obtained by Makeev et al. [59].
For healthy strip, without any delamination, the above set of equi-
librium equations reduce to

Nh
12 ¼ 0; Nh

22 ¼ 0; Mh
22 ¼ 0 ð21Þ

Minimization of the strain energy density also gives rise to a set
of natural and essential boundary conditions, apart from the gov-
erning equations. These boundary conditions needs to be enforced
on the general solution of the warping obtained after solving Eq.
(20). In addition to these boundary conditions, global constraints
arising from the definitions of warpings and local rotations, and
interface boundary condition, necessary to ensure continuity of
warpings across the sublaminates in the healthy region of the strip
has to be enforced. Mathematically these constraints and interface
conditions take the following form,
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w1h
i ¼ w2h

i

w1h
3;2 ¼ w2h

3;2
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Solution to the unknown warpings are determined by solving
the Euler-Lagrange differential equations given in Eq. (20), subject
to the essential and natural boundary conditions and the additional
constraints given in Eq. (23). Following the determination of the
warping terms, the strip strain energy, U1D, is obtained by integrat-
ing the expression in Eq. (18). The 1-D strain energy, U1D, is
expressed in terms of the linear and nonlinear 1D strain measures
as,
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U1D ¼ 1
2
�TL ½SL��L þ �TL ½SLN��N þ 1

2
�TN ½SN ��N ð24Þ

where the linear and nonlinear 1D strain measures, �L and �N
respectively are defined as follows:

�L ¼ fc11;j1;j2;j3gT

�N ¼ fj2
1;j

2
2;j2c11;j2j3;j2j1gT

and the matrices ½SL�; ½SLN �, and ½SN� are partitions of a 9� 9 matrix
[S] representing the linear and nonlinear stiffness part and are given
in Appendices A and B. For a healthy strip, stiffness terms are
obtained by substituting the length of the delamination ld ¼ 0 i.e
by substituting a ¼ b

2.
Linear extension-twist coupling is reflected in S12, while trapeze

effect, which is a nonlinear extension twist coupling exhibited
through S15 is captured in terms of delamination parameter,
‘a’. Other nonlinearities like the purely torsional nonlinearity
(S25 and S55) and nonlinear bending-twist coupling
Fig. 3. Finite element model of RUC for a 202=ð�70�Þ4=202=� 202
�

Fig. 4. Validation of variation of normalized COD with crack d
ðS35; S26; S59; S69 & S99Þ have also been captured asymptotically in
terms of delamination parameter. The process described is general,
however, for the purpose of demonstrating its utility on the tra-
peze effect closed form solutions of the stiffness terms are derived
for a delaminated strip with antisymmetric layup. It should be
noted that since these 1D stiffness terms are determined in terms
of ply level stiffnesses, effect of matrix cracks on any layer can be
naturally accounted for, in addition to delamination, by following
the methodology presented in Section 2.

The framework developed above is used to capture the trapeze
effect in the strip. The total strain energy of the strip is given as

U ¼
Z l

0
U1D c11;j1;j2;j3ð Þdx1 ð25Þ

The principle of virtual work for an axially loaded strip can be
written as

dU ¼ F1du1ðlÞ ð26Þ
=ð70�Þ4=� 202
	
T laminate containing cracks in the �70� plies.

ensity for (a) ½0=90�s and (b) ½0=90=� 45=45�s laminates.
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where, Fis the axial force. For the case of antisymmetric layup under
an axial force, both j2 an j3 are zero. The two governing equilib-
rium equations thus reduce to algebraic equations for the coupled
extension-twist problem:

@U1D

@c11
¼ F1 ð27Þ

@U1D

@j2
¼ 0 ð28Þ

These equations are solved by using the first equation to eliminate
c11 in favor of F1 and then using the second to express F1 in terms of
j1. Here k1 and j1 are constant so that the tip pretwist angle can be
written an h0 ¼ lk1 and the elastic tip twist angle h ¼ lj1. The results
can be written in terms of stiffness terms.

F1 ¼
h l2 S12

2 � S11S22
� �

þ3hlðS12S15 � S11S25Þþ2h2 S15
2 � S11S55

� �� �
l2 lS12 þ2hS15ð Þ

8<
:

9=
;

ð29Þ

Table 1
Material properties.

Materials E11 ðGPaÞ E22 ðGPaÞ G12=G13 ðGPaÞ m12

Glass/epoxy 46.2 12 5 0.3
Graphite/epoxy 144.7 9.5 4.7 0.31
Carbon/epoxy 127.8 9.4 4.2 0.28
Graphite/cyanate 135.6 9.9 4.2 0.3
4. Results and discussion

4.1. Characterization of matrix cracked laminates

In this section numerical results from computational microme-
chanics simulations are shown and the values of the constant p
Fig. 5. The normalised engineering moduli of ½0=90�s laminate for damage state
determined from the analysis are presented for various layup
sequences. The values of the constant p determined from the
micromechanics analysis are subsequently used in ply level stiff-
ness degradation model to calculate strip stiffness degradation.
Effect of strip stiffness degradation due to matrix cracks on the tra-
peze effect are then highlighted. Validation of the VAM based strip
model accounting for delamination is done by quantitatively com-
paring trapeze effect predictions with experimental results. Finally,
effect of both matrix and delamination on the trapeze effect is
discussed.

The capability of the FE based micromechanics approach to cap-
ture the effect of matrix cracks on ply level stiffness degradation is
first demonstrated. This is undertaken by modeling RUC of lami-
nates containing matrix cracks of various crack densities and dif-
ferent damage states using the ANSYS-APDL environment. In all
the models plies are finely meshed using 20-node SOLID186 brick
elements. The aspect ratio of the elements considered in the mod-
els are close to one. It is necessary to ensure proper displacement
of cracked surfaces during deformation. This is achieved by not
1 ((a) and (b)) and for damage state 2 ((c) and (d)) of glass/epoxy material.
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connecting nodes along cracked surfaces with each other. Delami-
nation is not considered in RUCs; hence, nodes along adjacent ply
interfaces are merged to ensure continuity of displacements. Fur-
ther, PBCs should account for continuity between the RUC surface.
For the in-plane response, PBCs should be applied on the opposing
faces of the RUC, which involves the imposition of displacement
constraints between the node pairs and is accomplished in ANSYS
by defining appropriate constraint equations. In symmetric lami-
nates, symmetric boundary condition is added to the face of the
RUC that corresponds to the laminate mid-plane due to the pres-
ence of mid-plane symmetry. A representative FE model of RUC
simulated in ANSYS is shown in Fig. 3. This RUC corresponds to a
Winckler layup ðaÞ2=ða� 90Þ4=ðaÞ2=� ðaÞ2=ð90� aÞ4=� ðaÞ2

� 	
T ,

with a ¼ 20�. Matrix cracks are considered to be present in the
ða� 90Þ4 and ð90� aÞ4 plies. The procedure is validated by deter-
mining the COD variation for different crack densities in ½0=90�s
and ½0=90=� 45=45� glass-epoxy composite. Fig. 4 shows that
COD decreases with increase in crack density, which is due to the
relieving of the tensile stress fields between adjacent cracks. To
gain confidence in the 3D FEM procedure adopted, the simulation
results are validated against experimental results for predicting
COD for different crack densities. The simulation results show good
agreement with the data reported in [62].

A large body of experimental and analytical results
[63,11,64,65] of stiffness degradation in cross-ply laminates are
reported in the literature. Hence, for the purpose of validation,
½0=90�s laminates containing two different damage states are first
considered - referred here as damage state 1 and damage state 2.
Fig. 6. Damage constant v/s crack density for (a) carbon/epoxy, (b) glass/epoxy, (c) graph
of p by using the curve fitting method for different stacking sequence.
Damage state 1 corresponds to the case when matrix cracks are
present only in the 90� plies and damage state 2 corresponds to
the case when cracks are present in the 0� and the 90� plies.
Fig. 5 shows degradation in modulus (longitudinal and transverse),
shear modulus and Poisson’s ratio with crack density evolution in
the laminate. These material properties for the damaged laminate
was determined by using their appropriate definitions in terms of
volume averaged stresses and strains. Predictions of the damage
state 1 are shown in the Fig. 5a and b and damage state 2 are
shown in Fig. 5c and d. It is observed that FE based computational
micromechanics approach is able to capture the material property
degradation of the laminate quantitatively.

The procedure described above is used to establish the relation
between damage parameter and cracked density in plies. For this
purpose, simulations were carried out for: (a) ½0=905�s and
½0=905=0�T carbon/epoxy laminates; (b) ½0=903�s and ½0=90�s glass/
epoxy laminates; (c) ½0=903�s; ½0=902�s; ½02=902�s and ½0=90�s
graphite/epoxy laminates; and (d) a2=ða� 90Þ4=a2=� a2=

�
ð90� aÞ4=� a2�T with a ¼ 20� for glass/epoxy and graphite/
cyanate laminates. Material properties used in the simulations
are reported in the Table 1. In all the simulations cracks were con-
sidered to be present only in the 90� plies. The effective E2 is deter-
mined from the simulations and the damage parameter is
calculated. Fig. 6a–d shows the calculated damage parameter ver-
sus crack density for all the simulated cases. Relation between
damage parameter and crack density, given in Eq. (8), is used to
fit the data in Fig. 6 to determine the value of constant ’p’ in all
the cases. The calculations highlight that value of ‘p’ is material
ite/epoxy, and (d) antisymmetric layup with different stacking sequence. The value



Table 2
Geometric properties.

Length (m) Width (m) Thickness (m) Pretwist (degree/m)

0:254 0:026 0:0012 2
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and lay-up dependent; values corresponding to different lay-up
sequences used in laminates are given in Fig. 6 and tabulated in
Table 3.

4.2. Model predictions and validation

In Fig. 7 VAM based model predictions of the degradation of the
longitudinal stiffness and the shear modulus of all the cross-ply
laminates for which the constant ‘p’ was determined is presented.
Additionally, results from FEM, obtained during the computational
micromechanics analysis, and experimental results are shown for
the purpose of validation. Cross-sectional stiffness terms for
healthy strip are provided in Appendix A; if these stiffness terms
are determined by accounting for matrix cracks then they can be
used to calculate the strip effective properties. Matrix cracks in
strip can be accounted by including damage parameter while
determining the individual ply stiffness terms (see Eqs. (6) and
(16)) as described in Section 3. By considering only unit axial load
and unit moment along x1, longitudinal stiffness and shear modu-
lus of the strip are determined, respectively. Model predictions
bring out all the salient features typically observed in cracked
ply-laminates. It was observed that there is progressive degrada-
tion of the longitudinal stiffness with evolution of the crack den-
sity. Further, stiffness degradation rate is observed to be function
of net 90� ply thickness within the laminate and material. The
degradation rate increases with increase in 90� ply thickness
within the strip. It was also observed that stiffness reduction in
glass-fiber strip was higher than carbon-fiber strips; this is due
Fig. 7. Validation of present and FE model with experimental result for normalised effecti
shear modulus of glass/epoxy for different layup orientation.
to the significantly higher load carried by transverse plies in
glass-fiber strips due to the high mismatch in its modulus along
longitudinal and transverse direction.

Following the micromechanical characterization of the matrix
cracked laminates, its effect on trapeze effect is investigated. For
this purpose, cantilevered strips made of graphite/cyanate and
glass/epoxy are considered with Winckler layup corresponding to
a ¼ 20 and a ¼ 30. Material properties and geometry of the strips
used in the analysis are given in Table 1, 2 respectively. Axial force
is applied at the free end of the cantilevered strips. Fig. 8a and b
shows the variation of the end-twist as a function of axial force
in graphite/cyanate and glass/epoxy strip, respectively. Matrix
cracks are considered to be in the ða� 90Þ4 and ð90� aÞ4 set of
plies. Model predictions for both set of strips are shown for three
different cases of crack density: (i) q ¼ 0 cr/mm (healthy strip);
(ii) q ¼ 1 cr/mm and (iii) q ¼ 2 cr/mm. Experimental results corre-
sponding to the healthy graphite/cyanate strip are taken from [59].
The present theory is able to predict the nonlinear extension-twist
response of the healthy strips and for the graphite/cyanate case the
model predictions are in agreement with the experimental obser-
vations. It was observed that for a given axial load the resultant
ve axial stiffness of (a) carbon/epoxy, (b) glass/epoxy, and (c) graphite/epoxy and (d)
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end-twist, in both sets of strips, increased with increase in matrix
crack density. The increase in matrix crack density leads to reduc-
tion in the nonlinearity of the end-twist to axial force relationship.

Effect of delamination on the trapeze effect in graphite/cyanate
and glass/epoxy strips are shown in Fig. 9. Model predictions are
presented for healthy strips, strips with 50% and 75% edge delam-
ination. Material properties and geometry of the strips used in the
analysis are given in Table 1 and 2 respectively. Fig. 9 shows the
comparison of end-twist predictions from the model with experi-
Table 3
The values of p and g.

Materials Layup p

Glass/epoxy ½0=90�s 1.98
½0=903�s 1.87
½202=� 704=202=� 202=704=� 202� 0.42

Graphite/epoxy ½0=90�s 0.39
½0=903�s 1.2
½0=902�s 0.92
½02=902�s 0.88

Carbon/cyanate ½202=� 704=202=� 202=704=� 202� 0.42
½02=904=02=02=904=02� 0.40

Carbon/epoxy ½0=905=0� 0.38
½0=905�s 0.58

Fig. 9. Comparison of model prediction with experimental data for healthy and delamina
material a ¼ 20� .

Fig. 8. Influence of axial force on the extension-twist coupling ða ¼ 20�Þ with ma
mental data from Makeev and Armanios [59] and Armanios and
Makeev [60]. The comparison has been done for three different
cases, viz., Fig. 9(a) graphite/cyanate a ¼ 20� (b) graphite/cyanate
a ¼ 30� (c) glass/epoxy a ¼ 20�. Model and experiments show non-
linear behavior between the applied axial force and the resultant
end-twist. The presence of edge delamination leads to reduction
in the axial-twist coupling. In general, the model predictions are
in good agreement with experimental observations. The variation
of end twist with delamination for graphite/cyanate and glass/
g (crack/mm)

0.25 0.5 0.85 1

5 0.62 0.64 0.69 0.72
5 0.64 0.68 0.72 0.74

0.39 0.42 0.46 0.46

0.73 0.70 0.68 0.70
0.76 0.71 0.69 0.70
0.70 0.70 0.68 0.68
0.75 0.72 0.71 0.72

0.38 0.40 0.38 0.39
0.60 0.72 0.68 0.67

0.80 0.0.78 0.73 0.74
0.80 0.80 0.74 0.74

ted strip of graphite/cyanate material for (a) a ¼ 20� , (b) a ¼ 30� and (c) glass/epoxy

trix crack density ðqÞ on (a) graphite/cyanate and (b) glass/epoxy materials.
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epoxy material are shown in Fig. 10. It gives information of end
twist at an axial force of 1 kN for different ply angle. Analysis of
Fig. 10 shows that the extension-twist coupling in strips with ply
orientations corresponding to a ¼ 0�;45� and 90�, vanishes. The
coupling is found to be maximum for a ¼ �28� for graphite/
cyanate and a ¼ �26� for glass/epoxy strips. These observations
agree with the results reported by Makeev et al. [59]. Fig. 11a
and b show model predictions of the extension-twist behavior of
healthy, matrix cracked, delaminated and strips with matrix cracks
and delamination. It was observed that matrix crack enhances the
extension-twist coupling; on the contrary, delamination reduces it.
Strips having matrix cracks and either 50% or 75% delamination
show reduced extension-twist coupling.

4.3. Discussion on strip behavior

Analyses of strips in the presence of matrix cracks and delami-
nation have shown that the two damage modes have completely
different effect on their extension-twist behavior. Matrix cracks
increases the extension-twist coupling while edge delamination
reduces it. Matrix cracks and delamination in the strips causes
degradation in their cross-sectional stiffness terms. The most basic
effect of intralaminar cracking is reduction in the overall effective
material stiffness properties of the laminate. Degradation of mate-
Fig. 11. Influence of axial force on the extension-twist coupling in strips having b
graphite/cyanate and (b) glass/epoxy materials.

Fig. 10. Influence of delamination on extension-twist coupling for (a) graphite/cya
rial stiffness properties lead to reduction in the strip cross-
sectional stiffness properties. For our analyses here, the linear
and nonlinear stiffness terms, S12; S22; S25; S55 and S15 are consid-
ered. These cross-sectional stiffness terms directly affect the
extension-twist coupling (see Eq. (29)). The reduction in these
properties due to intralaminar cracking is shown in Fig. 12 in
graphite/cyanate strip with Winckler layup and typical values of
a ranging from 0� to 45�. The transverse cracks are considered to
be in the ða� 90Þ4 and ð90� aÞ4 set of plies. The properties are
normalized with respect to their initial values (healthy). All the
strip cross-sectional stiffness properties reduce substantially due
to ply cracking. The degradation in properties is severe initially
during the damage development (i.e., for low crack densities),
and the properties reach their saturation values asymptotically at
high crack densities, after which significant changes in stiffness
properties are not expected. In particular, cross-sectional stiffness
terms S12 and S25 drop almost 70% for the case when a ¼ 0�; how-
ever, there is negligible change in these stiffness terms for other
values of a. Here, it is worthwhile to note that S12 couples
extension-twist and S25 is a measure of nonlinear twist. Since there
is no significant drop in these values for non-zero a values,
extension-twist coupling does not drop.

The degradation of the stiffness coefficients with increase in
mid-surface delamination length is plotted in Fig. 13 for graphite/
oth delamination and matrix cracks is shown for two different materials: (a)

nate and (b) glass/epoxy materials for various ply angle on laminates at 1 kN.



S.B. Salunkhe et al. / Composite Structures 180 (2017) 234–250 245
cyanate strip havingWinckler layup and typical values of a ranging
from 0� to 45�. The properties are normalized with respect to their
initial values (healthy). It was observed that delamination length
does not have much effect on stiffness coefficients S11 and S33. Also,
the relationship between classical stiffness coefficients and delam-
ination length is linear. This was not the case in strips having only
matrix cracks where even classical linear cross-sectional stiffness
Fig. 12. Influence of crack density ðqÞ on normalized extension-twist stiffness terms (b)
linear torsional stiffness term (d) S22 and normalized extensional term (a) S11 for graphite
of a healthy strip.
terms showed nonlinear relationship with crack density. Linear
cross-sectional stiffness term S12 and non-linear term S25 were
found to be very sensitive to delamination length (Fig. 13). Again,
this observation is in contrast to the behavior of these terms for
non-zero a and a ¼ 45� values in the case of strips with only matrix
cracks. Sharp degradation in S12 and S25 due to mid-surface delam-
ination signifies the reduction in the extension-twist coupling and
S12, (c) S15, (e) S25, normalized nonlinear torsional stiffness term (f) S55, normalized
/cyanate material. The stiffness terms are normalized with respect to stiffness values



Fig. 13. Influence of delamination on normalized extension-twist stiffness terms (b) S12, (c) S15, (e) S25, normalized nonlinear torsional stiffness (f) S55, normalized linear
torsional stiffness terms (d) S22 and normalized extensional term (a) S11 for graphite/cyanate material. The stiffness terms are normalized with respect to stiffness values for a
healthy strip.
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the nonlinear twist in the strip. In fact, in the absence of pretwist
and with 100% delamination, the structure will behave as two
strips with symmetric layup leading to zero linear extension-
twist coupling and nonlinear twist. This can be readily determined
by substituting the total delamination size ð2ld ¼ b� aÞ to be equal
to ‘b’ and pretwist k1 to be zero. It is, however, inappropriate to
generalize the results observed here and claim that delaminations
always lead to reduction in the extension-twist coupling in strips
where such a deformation mode is possible. Makeev and Armanios
[59] have shown that type of delamination influences the coupling
behavior. Their model and experimental data showed less that 0.2%
change in end-twist between healthy and 75% internally delami-
nated strips unlike the significant drop in coupling observed even
in 50% edge delaminated strips.
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5. Conclusions

This study has examined the effect of matrix cracks and delam-
ination on extension-twist coupling of thin pretwisted composite
strips. The modeling strategy adopted in the study combines the
capability of computational micromechanics and continuum dam-
age mechanics to characterize cracked plies and sublaminate
approach to account for delamination within the structural model-
ing framework based on VAM. After validating the model for deter-
mining the degraded modulus - both longitudinal and transverse,
shear modulus and Poisson’s ratio for different layups and matrix
crack densities and axial-twist response for a delaminated strip
with Winckler layup against experimental results, the effect of
damage on trapeze effect was studied. Detailed investigations were
undertaken for three different cases: (i) strips with only matrix
cracks; (ii) strips with only mid-surface edge delamination; and
(iii) strips with matrix cracks and mid-surface edge delamination.
In all the cases pretwisted strips with Winckler layup was consid-
ered. The results can be summarized as follows:

� A nonlinear relationship between the end-twist and the applied
axial force was observed in all the three cases studied. However,
it was observed that type of defect can affect the nature of the
extension-twist coupling behavior of the strip. For the case of
strips having only matrix cracks, the coupling increased with
increase in crack density. In strips with only delamination, the
coupling reduced with increase in the size of mid-surface edge
delamination. Strips having both matrix cracks and delamina-
tion showed reduced extension-twist coupling.

� In strips having only matrix cracks, the presence of matrix
cracks leads to the degradation of individual ply properties.
However, the cross-sectional stiffness terms directly influencing
the extension-twist coupling are not significantly affected.
Hence, increase in the end twist for a given axial load can be pri-
marily attributed to stiffness degradation at the individual ply
level.

� In strips having only delamination, it was observed that the
presence of delamination reduces the cross-sectional stiffness
terms influencing the extension-twist coupling. As delamina-
tion size increases, the behavior of the strip is dominated by
the two symmetric sublaminates, above and below the delami-
nation, leading to significant reduction in the extension-twist
coupling. The coupling vanishes if the strip is completely
delaminated.

� Finally, in strips having matrix cracks and delamination, the
coupling behavior is sensitive to the delamination size more
than the crack density. Delamination size determines the extent
of overall extension-twist stiffness reduction and consequently
affects the coupling behavior.

Appendix A

The healthy linear stiffness terms are,
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The new stiffness variables used above (the quantities with a
double overbar and overbar) are defined in the Appendix C.

Appendix B

The terms in the delaminated linear stiffness matrix are,
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The terms in the delaminated nonlinear stiffness matrix are,
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The new stiffness variables used above (the quantities with a dou-
ble overbar and overbar) are defined in the Appendix C.

Appendix C

The new healthy stiffness variables (the quantities with a over
doublebar)
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By replacing the superscript ‘h’ by ‘d’ and taking note of the fact
that the delaminated sublaminate is symmetric, we get the modi-
fied stiffness definitions for the delaminated sublaminate.
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