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The ideal strength of two-dimensional stanene may
reach or exceed the Griffith strength estimate†

Zhe Shia and Chandra Veer Singh*a,b

Ideal strength is the maximum stress a material can withstand, and it is an important intrinsic property for

structural applications. A Griffith strength limit of ∼E/9 is the best known upper bound of this property for

a material loaded in tension. Here we report that stanene, a recently fabricated two-dimensional material,

could approach and possibly exceed this limit from a theoretical perspective. Utilizing first-principles

density functional theory, we investigated the nonlinear elastic behavior of stanene and found that its

strength could reach ∼E/7.4 under uniaxial tension in both armchair and zigzag directions without incur-

ring phonon instability or mechanical failure. The unique mechanical properties of stanene are appreci-

ated by comparison with other Group-IV 2D materials.

1. Introduction

The structural application of any nanostructured material
hinges on a better understanding of its strength and mechan-
ical behavior.1,2 Ideal (theoretical) strength, σideal, is the
maximum stress achievable in a perfect crystal at zero
Kelvin.3–5 Knowledge of this value is important to our under-
standing of many problems in the solid state, as it essentially
corresponds to the failure of a crystal loaded in a defined
mode and is crucial to characterize the material’s failure,
which is usually controlled by the nucleation and motion of
defects. In 1921, Griffith6 first experimentally extrapolated a
theoretical strength of ∼E/9 applicable to solids, where E is the
elastic modulus of the material under uniaxial tension. Later,
Polanyi,7 Orowan,8 and other scientists,9,10 by relating the
ideal strength to macroscopic physical properties, set a similar
upper limit of σideal ≈ E/10.

Most three-dimensional engineering materials, nonethe-
less, have an observable (realistic) strength that is many orders
of magnitude smaller than their theoretical strength estimated
by the above relationships, as a significant amount of flaws
and defect structures undermine their usable strength. This
problem can be greatly resolved if the material is made extre-
mely thin or flat at the nanoscale, with the underlying concept
that the probability of a critical flaw will reduce as the size of
the material decreases. The ‘idea of thinness’ hastened the

utilisation of nanowires,2,11–13 nanopillars,14,15 nanotubes,16

and even nanoropes17 to achieve ultra-high strength, whereas
the ‘idea of flatness’ placed 2D materials on the stage.
Extensive studies have been devoted to a broad category of 2D
materials and satisfying mechanical properties have been
obtained. For instance, experimental measurement by atomic
force microscopy has demonstrated a strength range of E/10 to
E/15 for monolayer MoS2.

18 Previous density functional theory
(DFT) simulations echo the experimental results for MoS2

19

and predict a strength level of ∼E/13 (ref. 20) for borophene
and ∼E/11 (ref. 21 and 22) for hexagonal boron nitride and
g-GeC. As the strongest material known so far, the study of gra-
phene is never disappointing. It has been shown that gra-
phene, devoid of any defect, could reach a strength of E/11
(ref. 23 and 24) to E/9 (ref. 1) during uniaxial tension. Also, the
same Group-IV 2D material, silicene, has a strength up to ∼E/
10.25 These 2D materials all seem to reach close to the Griffith
limit.6 The question thus arises is whether a material could
possibly surpass these seemingly upper limits on theoretical
tensile strength.

The hunt for such a candidate has reached the lower part of
the Group-IV elements. An ab initio study of the ideal strength
of bulk diamond, silicon, and germanium suggests that the
decrease of stiffness and strength below the Group-IV is simul-
taneous but not proportional.26 It has been shown that the
Young’s modulus drops faster than the strength of the
material, which results in a reduction of the E/σideal ratio from
diamond to germanium.26 Starting from this insight, it is very
natural to expect the next Group-IV 2D material stanene to get
closer to the E/9–E/10 strength limit imposed by Griffith and
others on macroscopic solids.

In the 2D materials family, stanene has drawn particular
interest due to its exceptional performance and properties
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such as topological superconductivity,27 quantum thermal
transport,28 quantum anomalous Hall effect,29 and catalytic
activity.30 Recently, successful fabrications of stanene both on
substrates31,32 and as a free-standing structure33 have been
achieved. However, evidence of stanene sustaining significant
mechanical deformation remains elusive. In practical appli-
cations, a device made of 2D materials must be able to main-
tain its mechanical integrity during every stage of its pro-
duction and functional life. Being the strongest material ever
produced, graphene seldom ‘worries’ about its candidacy for
applications that require high strength or stiffness. But for an
allotrope of tin, softer than carbon in its bulk size, to replace
graphene in certain applications, its mechanical robustness
has to be assured first. After all, all of those novel properties of
stanene cannot be utilized in practice should it fail too easily.

Therefore, investigating the mechanical properties of
stanene is important both from a fundamental perspective in
understanding its deformational behavior and from practical
interest for its real-world applications. In this paper, we study
the mechanical response of stanene at considerable strains
and adopt a rigorous continuum formulation to determine the
nonlinear elastic constants up to the fifth order under uniaxial
and biaxial tension. For each deformation case, we determine
the ultimate tensile strength (UTS), which represents the
highest point on the stress–strain curve and after which the
material is considered to have mechanically failed. Since 2D
materials could fail by phonon instability before mechanical
failure, the integrity of stanene is also verified by looking at
any imaginary phonon frequencies at various strain levels and
loading directions. We also compare the properties of stanene
with its lighter Group-IV cousins, graphene and silicene, and
reveal the possible breakdown of the Griffith theoretical
strength limit of stanene. Lastly, charge density and computed
scanning tunneling microscopy (STM) images are analyzed to
capture the salient features of the deformation and fracture
process of stanene.

2. Modeling and theory

The stress–strain response of 2D stanene was investigated
using first principles based density functional theory (DFT)
calculations as implemented in the Quantum ESPRESSO simu-
lation package.34 In order to confirm the accuracy of quantum
chemistry computations, we performed simulations by using
the following potentials/functionals: the Rappe–Rabe–Kaxiras–
Joannopoulos (RRKJ) potential35 and projector-augmented-
wave (PAW) potential, both with an exchange–correlation func-
tional of the PBEsol generalized gradient approximation, the
Martins–Troullier (MT)36 potential with a functional of the
Perdew–Wang (PW) local density approximation (LDA) and
with hybrid functionals of PBE0 and B3LYP, and the
Goedecker–Hartwigsen–Hutter–Teter (GHHT) potential37 with
a hybrid functional of HSE06. The calculations used a kinetic
energy cutoff of 816 eV and an 11 × 11 × 3 Monkhorst–Pack
k-grid. A force convergence criterion of 0.001 eV Å−1 was

selected for structural optimization. The spin–orbit coupling
was shown not to have a distinguishable influence on pure
mechanical property calculations in our case (ESI Fig. S1†) and
therefore not turned on for all the cases. The monolayer tin
was initially constructed using the experimental lattice con-
stant a = 4.383 Å (ref. 31) and buckled distance δ = 1.2 Å.31

A vacuum layer of 30 Å was included to reflect the 2D nature of
stanene. Simulations were carried out on a six-atom supercell
for PBEsol, LDA, and PBE0 functionals and on a two-atom
supercell for B3LYP and HSE06 functionals due to the high
computational expense required by hybrid functionals. The
comparative analysis presented in Tables S1 and S3† shows
that both choices for number of atoms per supercell yield very
similar structural and stress behavior, confirming that both
systems represent identical 2D lattices within simulation
errors.

The material system was first subjected to a variable cell
relaxation to obtain a fully relaxed undeformed configuration.
The ground state lattice constant after relaxation was 4.547 Å,
within 2% of the values obtained by previous studies.38,39 The
thickness was measured to be 3.26 Å, consistent with the
experimental value for free-standing stanene (3.3 Å (ref. 33)).
The relaxation gave an average Sn–Sn bond length of 2.74 Å, a
buckled distance of 0.79 Å, and a bond angle of 111.91° (Fig. 1
and Table S1†). The strains were imposed by specifying the
positions of the atoms within the supercell, followed by relax-
ing the Sn atoms into their equilibrium positions within the
deformed structure, which yielded the minimum total energy.

Fig. 1 The structure of stanene. (a) Ball-stick display of stanene super-
imposed on a virtual STM image showing the top view of the honey-
comb lattice structure. A six-atom supercell for stress–strain calcu-
lations is encircled. (b) Perspective view of undeformed stanene
showing the buckled distance, bond length, and bond angle in the
undeformed state. (c) The two-atom primitive cell for phonon calcu-
lations and (d) the associated reciprocal space with the first Brillouin
zone.
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The stanene was strained uniaxially along the armchair (X)
and the zigzag (Y) direction, respectively, or equibiaxially along
both directions.

The DFT calculation yielded the 3D Cauchy (true) stress,
which was converted to 2D stress with a unit of N m−1 by
taking the product of the stress (N m−2) and thickness of the
free-standing stanene. Wei et al.’s continuum formulation23

was followed to describe the material’s elastic response. In
order to obtain nonlinear elastic properties from the stress–
strain relationships derived from elastic strain energy density
function, the 2D Cauchy stress (σ) was related to the second
Piola–Kirchhoff (PK2) stress Σ (N m−1) by the following
relation:23,40

Σ ¼ JF �1σðF �1ÞT ;

where J is the determinant of the deformation gradient tensor
F. The elastic properties of the material could be determined
from the PK2 stress tensor according to23

Σi ¼Cijηj þ
1
2!
Cijkηjηk þ

1
3!
Cijklηjηkηl

þ 1
4!
Cijklmηjηkηlηm þ . . . ;

where η is the Lagrangian strain and the summation conven-
tion for the subscripts runs from 1 to 6 employing the Voigt
notation.41

To examine the vibrational stability of the deformed
stanene, we calculated the phonon dispersions for stanene
based on density functional perturbation theory (DFPT).42

We used a two-atom supercell (Fig. 1c and d) and a dense
21 × 21 × 1 k-grid with a 5 × 5 × 1 q-grid to map out possible
instabilities. Structural optimization yielded a monolayer
structure identical to the six-atom supercell construction (see
Table S3† for more information). The PW-LDA pseudopotential
was selected for the DFPT calculations, and the same conver-
gence criteria as for the stress–strain calculations were used.

3. Results and discussion
3.1 Stress–strain response and high-order elastic constants

The nonlinear elastic response of stanene in terms of PK2
stress vs. Lagrangian strain is shown in Fig. 2a. Stanene has an
isotropic elastic response at strains up to ∼10%, evidenced by
a coincidence of the stress–strain curves. Compared with arm-
chair tension, stanene is somewhat stronger in the zigzag
direction, with a maximum PK2 stress of 3.071 N m−1, or 3.656
N m−1 under true stress. Elongation to UTS for the two loading
directions also varies. In the case of zigzag loading, it was
found that stanene could sustain approximately 10% more
deformation before reaching peak stress than armchair
loading. It is also interesting to note that, the biaxial stress in
Fig. 2a becomes much higher than the two uniaxial stress
responses, whereas the true stress measure in Fig. 2b suggests
the opposite. This phenomenon reveals the important role of
selecting the reference area when analyzing the nonlinear
mechanical response.

Higher-order elastic constants for stanene are extracted
based on Wei et al.’s the thermodynamically rigorous conti-
nuum formulation for the nonlinear elastic behavior of 2D
materials.23 By least-square fitting the DFT data before the
plastic region, fifteen elastic constants for the nonlinear conti-
nuum description of stanene are determined, as tabulated in
Tables 1 and S2.† The closeness in C11 and C22 matches the
near coincidence of the stress–strain responses of the two
orthogonal loading modes in the linear-elastic region at small
strains. Taking the numerical results obtained by the HSE06
functional as an example, the 2D Young’s modulus of stanene

is obtained by E � Ek ¼ C11
2 � C12

2

C11
¼ 21:842 N m�1; based

on the plane stress condition. If the true stress–true strain
curve is instead used to determine E, it is sensitive to the
choice of onset point for nonlinearity, which could be ambigu-
ous as illustrated in Fig. S2.†

The comparison of different exchange–correlational func-
tionals in Table 2 reveals that the UTS values of stanene are
consistently within a narrow range, confirming the accuracy of

Fig. 2 (a) The stress–strain response of stanene. Quantities are plotted in PK2 stress and Lagrangian strain. The lines indicate least-squares fit to the
DFT data. (b) The same data converted to true stress and true strain. For the purpose of demonstration, only the results obtained by PBEsol (RRKJ)
calculations are shown here.
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our calculations. Taking the averaged computational results
based on hybrid functionals as the most accurate here, the
UTS values are slightly over-predicted by the LDA functionals
and are nearly the same as those estimated by the two PBEsol
functionals. From a rigorous perspective, the discussions in
the rest of this paper will be based on comparing the average
mechanical properties values computed from using different
functionals.

3.2 Comparison of mechanical properties and ideal strength

The DFT-calculated mechanical properties of stanene are com-
pared with those of graphene and silicene in Table 3. The
average 2D Young’s modulus of stanene is computed to be
26.684 N m−1, which is about half of that of silicene43 and less
than one-tenth of that of graphene.23,24 A similar decrease in
UTS also exists for stanene as opposed to graphene and sili-
cene, demonstrating a trend of reducing stiffness and strength
down the periodic table for Group-IV elements. This variation
in mechanical properties could be attributed to the increasing
tendency of sp2–sp3 hybridization with increasing atomic
radius and bond length going down the Group-IV atoms.
A higher bond length leads to less π-bond overlap and more sp3

components, causing greater buckling (δSn > δGe > δSi > δC = 0).
As a flat structure has much stronger covalent bonds formed

by sp2 hybridization, stanene, which has the least extent of
sp2, would have its π-bond mostly weakened as opposed to gra-
phene and have the lowest in-plane stiffness among the exist-
ing Group-IV monolayers. A visualization of the sp2–sp3 hybrid-
ization in relation to structural integrity can be found in
section 3.4.

Our DFT results suggest that the ratio of the Young’s
modulus to UTS is 6.519 for stanene measured along the
zigzag direction and 7.341 along the armchair direction
(Table 3), which are higher than the Griffith theoretical limit
(UTS ≈ E/9). This underestimation by Griffith’s criterion does
not occur for silicene and graphene. When compared to a
more conservative estimate (∼E/10) proposed by Cottrell10 and
based on the Polanyi–Orowan equation,8 the two lighter
Group-IV monolayer materials do not show stress levels sur-
passing the threshold either. But it can already be seen the
E/UTS ratio has become smaller going down the Group-IV list
and, eventually, the breakdown of conventional estimates was
found to occur at stanene. In the next section, phonon stability
is tested before making a definitive judgment on whether the
Griffith theoretical strength limit for uniaxial tension is indeed
challenged in our case.

3.3 Phonon instability

As discussed above, it seems from the stress–strain curve alone
that stanene is stronger along the zigzag direction than the
armchair direction, and in both cases the UTS seemingly sur-
passes the Griffith and Cottrell strength limit. However, one
needs to verify whether stanene remains structurally stable
upon reaching the maximum stress, as phonon instability4,42

may intrude before the peak stress on the strain path.
The phonon dispersions plotted along the high symmetri-

cal points M′, Γ, K′, and M′ for an uniaxial armchair tension
are shown in Fig. 3. There are six phonon branches in total,

Table 1 Nonzero second- and higher-order elastic constants (in Voigt
notation and unit N m−1) tabulated below for the HSE06 functional

2nd-Order 3rd-Order 4th-Order 5th-Order

C11 = 26.64 C111 = −186.6 C1111 = 597.2 C11111 = −173.3
C12 = 11.306 C112 = −78.4 C1112 = 484.5 C11112 = −2206.2
C22 = 26.47 C222 = −226.9 C1122 = 172.4 C11122 = −3804.1

C2222 = 1590 C12222 = −7560.6
C22222 = −7188.7

Table 2 Comparison of UTS and the 2D Young’s modulus (E) of the three loading modes obtained by adopting six different functionals. The com-
plete data set for elastic constants can be found in Table S1 of the ESI

Unit: N m−1 PBEsol (RRKJ) PBEsol (PAW) PW-LDA HSE06 PBE0 B3LYP

UTS Armchair 3.656 3.718 4.076 2.919 3.821 3.622
Zigzag 4.084 4.097 4.520 3.380 4.224 3.930
Biaxial 3.318 3.361 3.670 3.318 3.333 3.186

E Armchair, E∥ 24.448 26.600 29.865 21.842 26.470 30.880
Zigzag, E⊥ 23.897 26.685 29.637 21.637 27.670 30.620

Table 3 Comparison of the calculated mechanical properties of stanene, silicene, and graphene

Stress unit: N m−1
Stanene (averaged
by 6 functionals) Silicene43 Graphene23 Graphene24

Young’s modulus, E (DFT) 26.684 63.8 348 340.8
Theoretical strength estimate, E/10–E/9 (Griffith
and others6,10)

2.668–2.965 6.38–7.09 34.8–38.67 34.08–37.87

UTS (DFT) Armchair 3.635 6.0 29.5 28.6
Zigzag 4.093 5.9 31.4 30.4

E/UTS ratio Armchair 7.341 10.3 11.8 11.9
Zigzag 6.519 10.8 11.1 11.2

Poisson ratio ν 0.434 0.325 0.169 0.178
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three of which have an acoustic nature – the flexural acoustic
(ZA), transverse acoustic (TA), and longitudinal acoustic (LA)
branches. A separate phonon calculation of stanene in an
undeformed state suggests that the acoustic branches are sep-
arated by a gap of ∼48 cm−1 below the three optical branches
(see Fig. S3†). It is evident from Fig. 3a that stanene experi-
enced phonon softening during deformation, and eventually,
at a critical true strain (εxx) of 0.205, incurred negative (imagin-
ary) frequencies near the Γ point. Analysis of the dynamical
matrix shows that the soft mode at 0.205 armchair strain is
related to the ZA mode. This strain corresponds to a position
on the stress–strain curve right after the true strain at UTS
(0.199), computed by adopting the LDA, suggesting that
stanene will maintain vibrational stability at a theoretical
strength level likely to surpass the Griffith limit when loaded
in the armchair direction.

Under uniaxial tension along the zigzag direction, the onset
of the imaginary frequencies is found to be at εyy ≈ 0.210, with
phonon soft mode of the ZA type, as shown in Fig. 3b. This is
prior to the strain (>0.3) corresponding to the peak stress on a
zigzag curve. Hence, the monolayer experiences phonon
instability, and the highest mechanical stress along the zigzag
direction listed in Table 3 would not be readily achieved for
stanene. This left the critical strain and stress to be about the
same as that of armchair loading. Therefore, by taking overall
consideration of both mechanical and phonon behavior, the
final suggested achievable E–σ relation is determined to be σideal
= E/7.4 for perfect 2D stanene under both uniaxial tension direc-
tions. This implies, from a computational perspective, a poss-
ible surpassing of the conventional ideal strength limit, where
σideal falls between E/10–E/9 for solids at the continuum level.

3.4 Charge density analysis

The distinction between material responses to different uni-
axial tensile strain can be manifested by employing simulated
STM with a negative bias voltage, which probes occupied elec-
tron regions.44,45 As discussed in section 3.3, in contrast to
perfectly flat graphene, the buckled shape of stanene is a
direct result of sp2–sp3 hybridization. Fig. 4a shows that the Sn
atoms and the associated electron clouds participating in
forming the hybrid bond are in alternating top and bottom
positions of the stanene basal plane, resulting in an arrange-
ment of the Sn atoms belonging to the D3d

3 point group. The
overlapping between electron clouds in buckled stanene is less
significant than in graphene possessing a flat geometry attrib-
uted to pure sp2 hybridization, which explains the drop in
stiffness and strength as discussed in section 3.2. The color of
the bonding region qualitatively describes the extent of cohe-
sion, and it is clear that upon loading, the electrons accumu-
lated in this region become fewer, indicating a weakening of
the bond and a separation of adjacent atoms. Meanwhile, the
Sn–Sn bond also experiences a slight rotation and translation,
which causes a decrease in the buckling distance of the mono-
layer stanene, as shown in Fig. 4b.

It is found that the atomic bonds which are parallel or
make a small angle to the pulling direction are easier to break
(Fig. 4c). For stanene under uniaxial tension, sp2–sp3 bonds
that are more aligned to the direction of pulling would break
first while other bonds retain their less-aligned positions. In
the case of equibiaxial tension, the material quickly flattens
out (Fig. 4b) and all the bonds have an equal possibility of
breaking, as evidenced by the same electron density around

Fig. 3 Phonon dispersions for stanene under uniaxial tension. The onsets of imaginary frequencies under (a) armchair and (b) zigzag tension are
indicated.
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the hexagonal lattice (see Movie S1† for animations). It is
worthwhile to note that the fracture pathways revealed by the
simulated STM images and charge density analysis match the
onset of the imaginary acoustic mode discussed in section 3.3,
which further consolidates our findings on the mechanical be-
havior of stanene.

4. Conclusion

In summary, we studied the mechanical response of stanene
under uniaxial and biaxial loading conditions using first-prin-
ciples DFT calculations. Specifically, it was found that stanene
could sustain up to ∼20% deformation in its armchair and
zigzag directions without losing either elastic or phonon stabi-
lity. By fitting nonlinear continuum theory to obtained stress–
strain curves, we evaluated the complete set of nonlinear

elastic constants of stanene up to the fifth order. A Young’s
modulus of 26.684 N m−1 was obtained for stanene. Our simu-
lations were conducted with six different exchange–correlation
functionals, and the calculated mechanical properties were
found to be within a narrow range. This reflects the high
chemical accuracy of our results and the relative insensitivity
of mechanical response to the choice of the DFT functional.
Additionally, we explained through virtual STM and charge
density analysis that the reducing stiffness and strength down
the Group-IV 2D materials is owing to the increasing sp2–sp3

hybridization within the material structure.
Moreover, our theoretical calculations revealed that the

ideal strength of stanene at 0 K is about E/7.4, higher than the
Griffith’s and Cottrell’s estimation of strength. However, the
accuracy of strength predicted here could also depend upon
any discrepancy in the atomic structure between theory and
experiment. Therefore, in situ experiments on stanene are still

Fig. 4 (a) Simulated STM images and charge-density plots illustrating charge distribution between adjacent Sn atoms in the undeformed state and
after bond breakage. (b) Decreasing buckled distance for stanene under tension. (c) Simulated STM images showing the alternation of electron distri-
bution during tensile tests. Out-of-plane charge dispersion is also included for each case. White × indicates the most probable position for bond
breakage in a supercell if the strain is sufficiently high.
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needed for confirmation of its mechanical property character-
ization. As is the case for graphene and MoS2 where DFT-com-
puted strengths have already been achieved experimentally, it
is hoped that the breakdown of the conventional strength limit
in 2D materials as suggested here could possibly be realized in
future.
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