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A B S T R A C T

Many composite structures are required to sustain severe thermo-mechanical loads over extended periods of
time, during which viscoelastic and viscoplastic behavior can cause the progression of micro-damage. In this
paper, a new computational multi-scale model that couples micro-damage mechanics with Schapery’s theory of
viscoelasticity and viscoplasticity has been developed to predict time-dependent damage evolution in laminates
under constant biaxial loading. After validation with experimental data, the new model capabilities are show-
cased by predicting damage evolution in two distinct laminates under different axial and transverse loads over
time. It is found that damage evolution in both laminates is highly sensitive to the biaxial loading levels, and that
crack multiplication in each ply is dependent on stacking sequence and ply orientation. The developed multi-
scale model may be a suitable design tool for composite structures required to endure long-term loads in de-
manding environments.

1. Introduction

Composite laminates are increasingly used as structural components
in aerospace, marine, energy, and construction applications due to their
high stiffness-to-weight ratios and equivalent mechanical performance
to their metallic alloy counterparts [1]. While the stiffness of these
materials in the pristine state can be predicted accurately using classical
laminate theory, the prediction of progressive failure processes under
various loading conditions remains challenging due to the hierarchical
structure of fiber-reinforced laminates and the complexity of observed
damage modes [2,3]. Moreover, favourable environmental conditions
may cause laminates to exhibit significant rate-dependent deformations
due to the susceptibility of the polymer matrix [4]. Such behaviour is
becoming more important since polymer composites are increasingly
used for primary structural applications. For example, aerospace ap-
plications of novel composite materials can involve high service tem-
peratures [5], under which these properties of the matrix will be more
important. Previous studies have shown that unidirectional glass-fibre
and carbon-fibre epoxy plies can exhibit creep behaviour in the trans-
verse and shear directions in which matrix behaviour is dominant [6,7].
Several experimental studies have also found that matrix micro-crack
density is affected by the time-dependent properties of the laminates
[6,8–10]. Nguyen and Gamby [7], for example, found that for lower

rates of loading, crack density evolution for a given amount of applied
stress in a non-linear viscoelastic cross-ply laminate was larger than
that for higher loading rates. The authors developed a non-linear time-
dependent shear-lag model to interpret this trend, and concluded that
the experimental results of crack density evolution for different strain
rates were due to the inherently different fracture properties of the
matrix. Raghavan and Meshii [9] observed similar results for a cross-ply
CFRP. They also studied the evolution of damage during a creep test,
and observed that damage could progress under a constant load over
time, which had a significant effect on creep strain evolution. Fitoussi
et al. studied the effects of matrix viscosity on damage evolution in
random glass fiber composites [11] by subjecting a short glass fiber
composite to impact loading and monitoring experimentally the evo-
lution of micro-damage mechanisms. They found that increasing the
strain rate delayed the onset of damage.

For laminates under tensile loads, ply micro-cracking is usually the
first mode of damage and occurs through the nucleation of matrix
cracks which rapidly propagate along the width of the laminate parallel
to the fibers, and extend through the ply thickness [12,13]. In order to
understand the effect of ply micro-cracking, several models have been
developed (see [12] for detailed review). These include analytical
models such as the shear-lag model [14–16], variational-based methods
[17,18], Crack Surface Displacement-based methods [19] and self-
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consistent approximations [20]. Continuum Damage Mechanics (CDM)
based models, which use experimental data for calibration instead of
explicitly modelling the cracked plies have also been developed
[21–25].

A more recently developed CDM-based modeling philosophy is the
Synergistic Damage Mechanics (SDM) approach, which utilizes com-
putational micro-damage mechanics models to calibrate a CDM model
capable of predicting progressive damage [12]. The SDM model is
formulated in terms of stiffness degradation parameters describing the
reduction of the different components of the stiffness tensor for dif-
ferent matrix micro-crack densities. The stiffness degradation para-
meters appearing in the SDM model are obtained by calculating the
Crack Opening Displacements (CODs) in the different plies of a multi-
directional laminate, using a Finite Element (FE) micro-damage model
in which cracks are introduced to simulate damage. The SDM model by-
passes the costly and complicated experiments that are otherwise re-
quired to calibrate CDM models, and can be applied to multi-directional
laminates with better accuracy than the analytical methods presented
above [26]. The SDM model can be further enhanced by including an
energy-based model for crack multiplication, which utilizes the same FE
micro-damage model to predict the evolution of crack density for dif-
ferent loading scenarios [27]. Together, SDM and the energy-based
damage evolution model can predict stiffness degradation curves de-
scribing stiffness loss as a function of loading history. Our recent works
on the SDM model have extended its capabilities in several ways. For
instance, Berton et al. [28] incorporated the effects of viscoelastic be-
havior in order to predict the time-dependent response of a CFRP la-
minate undergoing damage. Singh and Talreja [29] have used the SDM
model to make predictions of test cases involving a variety of material
systems, stacking sequences, and loading conditions during the recent
World-Wide Failure Exercise III. Montesano and Singh [30] extended
the model to multi-axial loading scenarios, which will be used here.

The models pertaining to the combined effects of cracking damage
and viscoelasticity are few. For example, Ogi and his collaborators
[31–33] used a shear-lag model to predict the effect of cracking on the
creep response of different laminates. They were able to explain the
increase in creep strain with loading and damage evolution. However,
time-dependent crack density evolution was not predicted, limiting the
applicability of the model. Asadi [34] extended these previous works;
he studied the evolution of crack densities in a [± 45/902]s laminate in
all layers under constant loading. He developed a micro-mechanical
variational model to predict damage evolution and performance de-
gradation during constant loading of the laminate. The model was
highly accurate, but due to its micromechanical basis, it was restricted
to a single stacking sequence. Ahci and Talreja [5] proposed a CDM
model accounting for non-linear viscoelasticity and damage to predict
the creep response of a cross-ply laminate. This approach required a
complicated experimental procedure to determine the parameters of the
CDM model, and crack density evolution was not predicted. Varna et al.
[35] developed a SDM model accounting for viscoelasticity that could
predict stress relaxation of a cross-ply laminate containing cracks.
However, crack density multiplication was not predicted, and the
analysis was restricted to cross-plies. Giannadakis and Varna [36]
proposed a model for predicting the effect of shear damage on the
viscoelastic-viscoplastic response of a [± 45]s laminate, which used
experimental data to determine the combined effects of damage and
time-dependent behaviour on the creep response of the laminate. Al-
Rub et al. [37] developed a model combining non-linear viscoelasticity,
viscoplasticity and damage to predict the constitutive response of
polymers and polymer/clay composites. These last two models were
accurate in their combination of separate constitutive models into a
single constitutive theory, however experimental calibration involved
extensive testing.

In this paper, a new Synergistic Damage Mechanics model has been
developed incorporating the effects of biaxial loading as well as non-
linear viscoelasticity and viscoplasticity in symmetric laminates to

predict progressive matrix microcracking and stiffness loss during
constant loading. The viscoelastic-viscoplastic properties of the in-
dividual plies based on Schapery’s formulation are obtained from the
literature, and implemented in the framework of the SDM model to
predict damage evolution, and the overall creep response. The model
has been validated with respect to experimental measurements pub-
lished in the literature. The model is capable of predicting micro-crack
density evolution in all layers under biaxial loading scenarios in multi-
directional laminates, and can also determine the long-term stiffness
degradation under different constant loads. Two different laminate se-
quences, namely [0/90]s and [0/90/∓45]s have been considered in this
study to cover different types of laminates.

2. Progressive Damage Modeling: Synergistic Damage Mechanics
(SDM)

The Synergistic Damage Mechanics (SDM) model is a CDM-based
damage model that can quantify the stiffness degradation due to sub-
critical matrix micro-cracks in the plies of a laminate with a symmetric
stacking sequence (which will be referred to as symmetric laminates)
which develop under tensile loading. For each ply orientation, the
micro-cracks in a given layer will be parallel to the fibers, each or-
ientation corresponding to a specific mode of damage, which is de-
scribed in terms of a damage tensor. The reduced stiffness due to the
matrix micro-cracks can then be calculated with evolving crack den-
sities in the different plies. In SDM, it is assumed that cracks are parallel
to each other, equally spaced, span the whole thickness of the ply and
the whole width of the representative volume element (RVE) (Fig. 1).
Although a given layer may have micro-cracks, it can still carry a load
because each micro-crack is constrained by the adjoining plies of the
laminate that are oriented at different angles. One of the main ad-
vantages of the proposed model is its ability to account for the con-
straining effects of adjacent plies on the Crack Opening Displacement
(COD) of the micro-cracks.

2.1. Synergistic Damage Mechanics (SDM) model

Each mode of damage (α) corresponds to a different ply crack or-
ientation dictated by the ply orientation, and damage in the ply is re-
presented by a damage tensor of the following form:

=D
κ t
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where tα is the thickness of the cracked ply with a given orientation, sα
is the spacing between cracks in the ply, t is the total thickness of the
laminate, ni represents the components of the unit vector normal to the
crack surface in the coordinate system of the laminate, and κα accounts
for the effect of adjacent cracks on the COD of the ply crack. Due to the
interactions of the stress fields between cracks in different layers and
within the same layer, κα will change depending on the crack density of
each ply. The stiffness of a laminate that has undergone progressive ply
cracking can be defined by:
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Cij is the 3×3 stiffness tensor of a symmetric laminate written in Voigt
notation, under plane stress conditions. Ex

0, Ey
0 are the Young’s moduli

in axial and transverse directions, νxy
0 , νyx

0 are the major and minor
Poisson’s ratios, and Gxy

0 is the shear modulus of the undamaged lami-
nate. The first term is the stiffness of the undamaged laminate and can
be calculated using Classical Laminate Theory (CLT) from the ply
properties. The second term represents the reduction in stiffness of the
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symmetric laminate due to matrix micro-cracks. It depends on the da-
mage tensor and a set of stiffness degradation parameters −a α

[1 4] , where
there are 4 parameters for each mode of damage α. The parameter bα
depends on the stacking sequence of the laminate, and is equal to 1 for
the ply adjacent to the midplane of the laminate and 2 for all other
plies. The parameters −a α

[1 4] are obtained by computing the change in
stiffness of the laminate using FE micro-damage model for a given
amount of crack density; they are assumed not to change with in-
creasing crack density. Dα is a scalar which represents the α mode of

damage, and is equal to =Dα
κ t
s t
α α
α

2
(see Eq. (1)). The effect of the cracked

ply orientation on the stiffness degradation of the laminate is taken into
account through the −a α

[1 4] parameters, as well as κα, which describes
the evolution of COD with respect to crack density in the layer. Note
that the indices i and j corresponds to 1, 2 and 6 in Eq. (2), as per Voigt
notation, while they correspond to 1, 2 and 3 in Eq. (1).

2.2. FE micro-damage model

The evolution of the COD in terms of the crack density in each layer
obtained from FE micro-damage modelling can be calculated as follows:
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+
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where u(Δ )α2 is the average COD, κα is the normalized COD, εeff is the
effective strain causing the cracks to open, tα is the thickness of the
cracked ply, ρα is the crack density corresponding to the mode of da-
mage α, and c1, c2, and c3 are fitting parameters. These parameters are
obtained using FE micro-damage modelling. By varying the crack
density and calculating the COD, a relationship between ρα and κα can
be obtained, from which the fitting parameters can be derived. Once the
fitting parameters are obtained, the COD can be predicted for a known
crack density using Eq. (3). The construction of the FE micro-damage
model has been discussed in further detail by Montesano and Singh
[30].

In order to by-pass the need for many FE simulations to obtain the
COD parameters appearing in Eq. (3), Montesano et al. [38] developed
analytical relationships relating these three parameters to the proper-
ties of the plies in the laminate. For each ply, these parameters depend
on the stiffness of adjacent plies, their orientation, their thickness, as
well as on the thickness of the said ply. From these analytical re-
lationships, the obtained parameters can be used for the predictions of
the SDM model in Eq. (2). The −a α

[1 4] still need to be obtained, however

a single simulation for each component of the stiffness tensor and each
ply crack is sufficient to determine these.

2.3. Energy-based crack multiplication model

The SDM model described in the previous section can predict the
stiffness degradation for a given state of damage or density of matrix
micro-cracks. In order to predict the constitutive response of a laminate
undergoing progressive damage, the evolution of the density of matrix
micro-cracks is required. The evolution of crack density in each layer of
the laminate can be evaluated by using an energy-based model [27].

Based on the evolution of COD with the density of matrix micro-
cracks obtained using the FE micro-damage model (Section 2.1), the
energy density release rate for crack multiplication can be obtained
using the following equation:
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Here, ∼u s( )n
α

α is the normalized COD for a crack spacing sα (equal to κα),
E2 is the modulus in the transverse direction of the ply, and σα

2 is the
local ply transverse stress (perpendicular to the crack surfaces). σα

2 is
calculated based on the local ply strain and the linear elastic properties
of the plies. Using the strain energy density release rate calculated with
Eq. (4), a numerical procedure implemented in MATLAB is used to
predict crack density evolution versus applied global strain on the la-
minate. In order to predict crack multiplication, the critical energy
density release rate GIc of the ply is required. GIc is itself calculated
based on experimental data on ply cracking, combined with a numer-
ical procedure described in [27]. After the crack density in each layer
has been evaluated for a specific point in the loading sequence, the
stiffness of the laminate can be determined by using Eqs. (1)–(3). The
crack multiplication model accounts for randomness in crack multi-
plication by defining a stochastic value of the critical energy release
rate for crack multiplication GIc based on a Weibull’s function. When
calculating crack density, each ply is divided into segments that can
undergo cracking. A MATLAB loop calculates a stochastic value of GIc
for each segment to which WI is compared, and the crack density is
adjusted accordingly. Full details of the model are provided in the paper
by Montesano and Singh [27].

To incorporate different material models into the framework of the
SDM model, the global strain in the material should be determined
using the material model. Next, the local stress (σα

2 ) can be computed

Fig. 1. Schematic showing the different modes of ply micro-cracking in a multi-directional laminate. The top right graph shows the loading scheme used in the
current paper. VE refers to the viscoelastic properties of the plies; VP refers to the viscoplastic behaviour; QS is for quasi-static loading.
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from the local strain, which is obtained by transforming the global
strain to the ply coordinate system. From there, the energy release rate
for crack multiplication can be calculated using Eq. (4), and the crack
density can be updated using the approach given above.

It should be noted that the critical energy density release rate for
viscoelastic-viscoplastic materials is dependent on loading rate [7,34].
In this work, we determined the GIc by using experimental data pub-
lished in the literature [39]. The critical energy for crack multiplication,
GIc, also decreases with time for the time-dependent behaviour of the
matrix [40]. In order to determine the form of this decay, an approx-
imate approach was used. Shokrieh et al. [41] obtained a rate-depen-
dent fracture energy for glass fiber composites. The creep strain pre-
dicted by the current model was used to calculate the time-dependent
creep strain rate. This time-dependent equation was then combined
with the strain-rate dependent fracture model of Shokrieh et al. to
obtain the decay in G t( )Ic . The final form is given by:

= + ⎛
⎝

⎛
⎝

− ⎞
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⎞
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G t
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2 2

exp
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Ic Ic
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4
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where GIc
0 is the critical energy for crack multiplication at time t= 0

(start of constant loading) and t is time since the start of the creep
simulation.

It should be noted that in this part of the model, the time-dependent
properties of the matrix are accounted for through the time-dependent
G t( )Ic , and the time-dependent COD evolution. The ply properties are
assumed to be linearly elastic. This is deemed reasonable given that the
stress relaxation caused by the time-dependent behavior of the matrix
are very small. Independent calculations showed that ply stress re-
laxation does not affect crack multiplication significantly.

2.4. Material models for viscoelasticity and viscoplasticity

The creep strain of a viscoelastic-viscoplastic ply can be calculated
as a function of time for different constant loading levels using
Schapery’s thermodynamics-based constitutive model [42]. The creep
strain can be defined using the following equation [43]:
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where i =2 for the transverse strain component, and i =6 for the shear
strain component. The first term in square brackets represents the vis-
coelastic response of the material. In the material system studied here,
Megnis and Varna [43] showed that the viscoelastic deformation could
be assumed to be linear. The summation term corresponds to a Prony
series consisting of k terms, where Ar is the increase in time-dependent
compliance corresponding to the rth term of the Prony series, and τr is
the time-constant describing the rate of increase in compliance with
time. The second term in Eq. (6) represents viscoplastic strain expressed
in the form of the product of a stress-dependent function, and a time-
dependent function. The exact expressions for these functions are given
by: = + +− − −ζ τ τ5.974·10 3.419·10 3.621·1066

9
12
2 8

12
7 where τ12 is the shear

stress in MPa, and =ξ t t( ) 0.003 0.43. We should note that according to
the experimental study [43], viscoplastic deformation only occurred in
the shear direction. Following the implementation of Eq. (6) for each
ply, a numerical procedure developed by Dillard et al. [8] was used to
obtain the viscoelastic-viscoplastic behavior of the laminate from the
viscoelastic-viscoplastic behavior of the individual plies.

2.5. Combined laminate time-dependent behaviour and damage evolution

The present work is concerned with the progression of damage
during constant loading, and the resulting creep strain. Under constant
loading, the crack density in the different plies of the laminate will
continue to increase as a result of increasing strain. The model calcu-
lates the effect of damage on the time-dependent behaviour through the

following strain formulation:

= +ε t S σ ε( )i
L

ij
L

CONST j
L

CREEP i
L

, , (7)

In Eq. (7), ε t( )i
L is the time-dependent strain tensor that includes the

effects of damage (with 3 components as per the plane-stress approx-
imation, and in Voigt notation). The first term is the elastic part of the
strain under a constant load σCONST j

L
, and depends on the number of

micro-cracks that dictates the decrease in laminate compliance Sij
L due

to damage. The decrease in laminate compliance is obtained using the
SDM model using Eqs. (1)–(3) [28]. Under constant loading, the in-
crease in local ply strain will lead to an increase in the crack density and
COD. The increase in crack density under constant loading will increase
the state of damage, thereby enhancing the creep response through its
effect on the elastic component of strain, as per Eq. (7). Therefore,
viscoplasticity will affect the damage evolution and the total creep
strain in two ways. First, the viscoplastic strain will cause an increase in
the local ply strain during loading, which will increase the time-de-
pendent crack density. Second, the viscoplastic strain will directly in-
crease the total creep strain relative to that in a system that is purely
viscoelastic.

2.6. Numerical implementation

The SDM model with viscoelastic-viscoplastic material model has
been implemented in MATLAB and the loading scheme is explained in
Fig. 1. A flowchart explaining the MATLAB algorithm for calculating
damage during quasi-static and constant loading is also shown in Fig. 2.
The simulation was performed in two steps, (a) quasi-static loading and
(b) constant loading. At each simulation step, the local energy density
release rate for crack multiplication was calculated using Eq. (4). The
crack density was then updated when the energy release rate for crack
multiplication (W )I was found to be higher than the critical energy re-
lease rate for crack multiplication (G )Ic [27]. Using the SDM model, the
stiffness of the laminate can then be updated, and the stress–strain re-
sponse predicted. The axial and transverse loads are increased to their
respective constant load levels (σx

0 and σy
0). Following the quasi-static

loading, the loads were maintained constant. A similar procedure was
followed for time stepping during the creep deformation except that the
time dependent critical energy release rate for crack multiplication
G t( ( ))Ic was used to determine the crack multiplication and the vis-
coelastic-viscoplastic material model was used to predict strain. Once
the crack density was updated, the stiffness was calculated using Eqs.
(1)–(3), and the total creep strain updated as per Eq. (7).

3. Results and discussion

3.1. Model validation

In order to demonstrate the accuracy of the current model, and its
ability to predict the time-dependent behavior of viscoelastic-visco-
plastic composites, the model has been validated with respect to ex-
perimental data, as well as previous models. Due to the current un-
availability of experimental data for time-dependent matrix micro-
crack multiplication in viscoelastic-viscoplastic laminates, the different
components of the model have been validated separately. The three
parts of the model were presented in Section 2, and consist of a vis-
coelastic-viscoplastic material model for laminates (not including the
effects of damage), a time-dependent micro-crack multiplication model,
and a stiffness degradation model based on Synergistic Damage
Mechanics.

3.1.1. Validation of the viscoelastic-viscoplastic implementation
We first validate the nonlinear viscoelastic-viscoplastic model,

without any damage, by comparing the predictions from our im-
plementation to the theoretical creep simulation results for a GFRP
laminate under uniaxial loading previously published by Megnis and
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Varna [43]. The parameters to describe the viscoelastic-viscoplastic
behavior of the individual plies of the GFRP laminate as defined in Eq.
(6) are given in Table 1 and Table 2. Fig. 3(a) shows the prediction of
creep strain following a quasi-static loading to a stress of 50MPa in the
[± 45]2s GFRP laminate and comparison with the material model
previously developed by Megnis and Varna for viscoelastic-viscoplastic
plies [43]. It can be observed from the figure that the prediction of the
current model match very well with the previous work, thus validating
the creep model.

3.1.2. Validation of the crack multiplication model
The crack multiplication was validated by comparing its predictions

to experimental results provided in the literature for the glass fiber/
epoxy material system studied in this paper [39]. The predictions of the
crack multiplication model are compared to the experimental data in
Fig. 3(b). The critical energy release rates for crack multiplication in
each ply were obtained through trial-and-error, until agreement with

Fig. 2. Flowchart explaining the MATLAB program used to perform the progressive damage simulations under viscoelastic-viscoplastic creep.

Table 1
Parameters for the viscoelastic part of the model [42].

A1 (Pa−1) A2 (Pa−1) A3 (Pa−1) A4 (Pa−1)

Transverse 8.12× 10−12 2.81× 10−12 6.14× 10−12 8.25×10−12

Shear 3.24× 10−11 −3.02× 10−11 4.64× 10−11 2.29×10−11

τr (s) 2400 14,000 25,000 550,000

Table 2
Elastic properties of the plies.

Elastic property Value

E1 (GPa) 45
E2 (GPa) 14.6
ν12 0.32
G12 (GPa) 4.95
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experiments was satisfactory. The values GIc
0 for each laminate and each

ply are given in Table 3. In one of our previous publications [27], a
computational procedure was developed for obtaining GIc

0 based on the
ply crack initiation strain only, bypassing the trial-and-error approach.
However, such a procedure is complicated and time-consuming, and
since the focus of the present paper is on time-dependent damage

evolution, we have used the trial-and-error method instead.
In the case of the simulations performed in this paper, it was ne-

cessary to predict the evolution of cracking during constant loading. As
explained in Section 2, this was accomplished by implementing a time-
dependent critical crack multiplication energy, G t( )Ic (Eq. (5)). Using
this time-dependent critical energy, as well as the creep model for
viscoelastic-viscoplastic composites, crack multiplication was predicted
for a [± 45/902]s CFRP laminate for which time-dependent micro-
cracking has been studied experimentally by Asadi [34]. The results of
the model have been compared to the experimental measurements in
Fig. 3(c), showing almost perfect agreement.

3.1.3. Validation of the SDM model
The stiffness degradation parameters used for the SDM model,

namely −a α
1 4, were obtained for the GFRP laminates using FEA micro-

mechanical simulations and are provided in Table 3. The parameters for
the evolution of COD with respect to crack density are provided in
Table 3 as well. In order to validate the SDM model for the GFRP, in-
dependent FEA simulations were performed for different crack densities
from which stiffness was obtained. The predictions of the independent
FEA simulations were compared to the predictions of the SDM model, as
shown in Fig. 3(d). Clearly, the predictions of the SDM model are

Fig. 3. a) Viscoelastic-viscoplastic creep strain prediction for a [± 45]s GFRP laminate under a creep stress of 50MPa, and comparison to a previous model from the
literature [43]. b) Evolution of crack density under quasi-static loading for a cross-ply GFRP composite, and comparison to experimental data [39]. c) Time-
dependent crack density evolution in each layer of a [± 45/902]s CFRP laminate predicted by the model, and comparison to experimental data under a creep stress of
45MPa [34]. (d) Predictions of stiffness degradation with respect to crack density in a [0/90/∓45]s GFPR laminate using the SDM model (Eqs. (1)–(3)) and
independent FEA simulations in Ansys Parametric Design Language (APDL).

Table 3
Damage model parameters for glass fiber/epoxy composite.

Laminate [0/90/ ∓ 45]s [0/90]s

Ply orientation 0° 90° −45° 45° 0° 90°

Stiffness degradation parameter
(GPa)

a1 0.77 8.08 5 5 0.77 8.14
a2 7.45 0.84 4.92 5.01 7.55 0.82
a3 1.74 1.54 0.90 0.84 1.30 1.61
a4 4.78 5.37 3.48 2.56 6.64 3.07

Critical energy release rate GIc
0 300 300 300 300 300 300

COD evolution parameters c1 3.15 1.28 1.28 1.26 3.15 1.26
c2 0.95 0.35 0.35 0.7 0.95 0.7
c3 1.69 1.63 1.63 1.61 1.69 1.61
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extremely close to the independent simulation results, thus validating
the analytical COD formulation, and the −a α

[1 4]parameters.

3.2. Model predictions

Two laminates with different stacking sequences and the same ply
material properties were considered in this work to investigate the ef-
fect of ply lay-up. A detailed parametric study has been performed to
predict the crack density and stiffness degradation in the [0/90/∓45]s
and [0/90]s glass fiber/epoxy laminates with viscoelastic-viscoplastic
properties described by Eq. (6) and material properties obtained from
Megnis and Varna [43]. The parameters for the energy-based crack
multiplication model and the SDM model are given in Table 3. The ply
thickness was set to 0.5 mm.

Fig. 4(a) shows the evolution of crack density in the 90° ply of a [0/
90/∓45]s CFRP quasi-isotropic viscoelastic-viscoplastic laminate during
quasi-static and under creep deformation at a constant axial load of
210MPa. The different curves correspond to different transverse loads.
The initial portion of the curves to the left of the red vertical line cor-
responds to the quasi-static loading, while the portion to the right of the
red line corresponds to the constant load simulation. It can be observed
from the figure that cracking initiates during the quasi-static loading,
and the crack density continues to increase during the creep test. The
crack density evolution shown in Fig. 4(a) can also be qualitatively
compared to experimental measurements of crack density evolution
during constant loading (see [6]). From Fig. 4(a), it can be seen that an
increasing applied transverse stress σy does not lead to a large difference
in crack density evolution in the 90° layer. The crack density in the 90°
ply reaches approximately 1.5 cr/mm at long times under all transverse
loads. The evolution of crack density in the +45° ply is shown in
Fig. 4(b). The overall trends of the evolution of crack density are similar
to that in the 90° ply. However, transverse loading has a large effect on
the crack density in the off-axis ply. This effect is due to the orientation
of the plies for which a transverse laminate stress causes a larger local
transverse stress driving crack multiplication. The crack density is equal
to 0.6 cr/mm under uniaxial loading in the 45° ply, while it reaches
1.5 cr/mm under a transverse load of 180MPa.

To quantify the increase in crack density during creep deformation
under biaxial loading, crack densities before (t= 0) and after (t= tend)
the viscoelastic-viscoplastic deformation are shown in Fig. 5 for the 90°
and −45° plies of the [0/90/∓45]s quasi-isotropic laminate. In the case

of the 90° ply, the crack density increases with the applied axial load σx ,
with crack initiation occurring at around 140MPa, as can be seen in
subplot (a). The effect of creep strain is to lower the stress necessary to
reach a given crack density, shifting the crack initiation stress to around
80MPa, as can be seen in subplot (a). The transverse load has very little
effect on the crack density evolution, both before and after constant
loading. This can be explained from the stacking sequence of this la-
minate. In the case of the 90° ply of the quasi-isotropic laminate, the
transverse load causes a slight contraction of the laminate in the axial
direction, preventing cracking. However, the out-of-plane contraction
enhances crack multiplication. In this particular stacking sequence,
these effects cancel out, such that the transverse load has almost no
effect on crack density evolution in the 90° ply. In the case of the −45°
ply, shown in subplot (b), the crack density also increases with in-
creasing axial stress. The transverse stress has a very large effect on the
crack initiation stress, however, reducing it from more than 240MPa to
about 80MPa at time t= 0, and from 150MPa to less than 0MPa at
time t= tend as seen in subplot (b). This can be explained from the fact
that the transverse stress causes an increase in the local ply COD and
local transverse stress by increasing the local ply transverse strain. After
creep deformation has occurred, the crack density in the −45° ply has
significantly increased.

To show the effect of biaxial load ratio crack density evolution and
stiffness, the evolution of crack density in the different plies of the [0/
90/∓45]s laminate and its axial and transverse stiffness with respect to
the biaxial load ratio are shown in Fig. 6(a). The results correspond to
an axial load σx level of 150MPa and a varying transverse load σy of
0–300MPa. It can be seen for the quasi-isotropic laminate that the
crack density in 45° and −45° plies are most affected by the transverse
load. While the crack density in 90° ply increases from 0.9 to 1.15 cr/
mm, the crack density in −45° ply increases from around 0 cr/mm to
more than 1.7 cr/mm. As expected, the increase in transverse load
significantly affects the transverse stiffness as can be seen in the figure.
It also affects the axial stiffness significantly, leading to a decrease in
modulus from 0.91 to 0.7 of the initial value. In the case of the cross-ply
laminate shown in subplot (b), crack density in both layers increases
due to transverse load, leading to more severe stiffness degradation in
both laminate directions. The predictions of crack density evolution up
to around 0.8 cr/mm and associated stiffness degradation by 20% in
these laminates are in good agreement with experimental observations
[44]. We should note that the results of Fig. 6 are taken at the end of the

Fig. 4. Crack density evolutions versus simulation time for a [0/90/∓45]s GFRP laminate loaded to an axial load of 210MPa. a) 90° ply crack density. b) 45° ply crack
density.
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creep simulations.
The axial stiffness due to damage progression under quasi-static

loading (i.e. before creep) and that under constant loading is depicted
in Fig. 7 for the two GFRP laminates. The solid lines represent the
stiffness of the laminates after quasi-static load, i.e. before creep de-
formation, and the dashed lines represent the stiffness of the laminates
after creep deformation. As can be seen in Fig. 7(a), the initial axial
stiffness of the undamaged [0/90/∓45]s CFRP starts degrading beyond
140MPa of uniaxial quasi-static loading and keeps decreasing with
increasing applied load. The normalized stiffness reduces to a value of
85% of the undamaged value under a uniaxial load of 300MPa. Low
transverse loads do not have a noticeable effect on damage initiation;
however, when the transverse load reaches 180MPa, damage initiates
at an axial load of 80MPa. Under transverse loading, cracking is en-
hanced in all layers of the laminate, causing a larger loss in stiffness
with axial loading. Under a transverse load of 180MPa, the stiffness has
reduced to 77% of the undamaged value. Creep deformation enhances

cracking, and causes further stiffness degradation. Fig. 7(b) shows the
axial stiffness of the [0/90]s CFRP laminate under quasi-static loading
(before creep) and after creep. Under uniaxial loading, the stiffness
starts degrading under a load of 150MPa and keeps decreasing with
higher loading levels, due to increased cracking. At the end of 300MPa
of quasi-static loading the axial stiffness reduces to a value of 85% of
the initial value. The presence of transverse stress enhances the damage
progression leading to a larger reduction in stiffness as can be seen by
comparing the solid lines of different colors. Similarly, creep de-
formation causes further stiffness degradation, with the stiffness
reaching a minimum value of 78%, at which point crack density is
saturated.

In order to better understand the effects of biaxial loading on stiff-
ness degradation, time-dependent stiffness degradation envelopes have
been developed to determine the amount of stiffness loss for different
values of biaxial loading in both laminates studied in this paper. In
Fig. 8(a), we show the stiffness degradation contour lines in terms of the

Fig. 5. Crack density versus axial stress with different levels of transverse stress in the 90° and 45° plies of the quasi-isotropic GFRP [0/90/∓45]s laminate before
(t= 0) and after (t= tend) creep deformation.

Fig. 6. Evolution of crack density and normalized stiffness for the GFRP composite under different levels of transverse loading: (a) Quasi-isotropic [0/90/∓45]s
laminate under an axial load of 150MPa, and (b) cross-ply laminate under an axial load of 150MPa.
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axial and transverse loads for the [0/90/∓45]s GFRP laminate, before
the creep test, and at the end. In each case, the stiffness degradation
contour lines correspond to a loss of 5%, 10% and 15% in the initial
axial modulus, Ex

0, or in the initial transverse modulus, Ey
0, depending

on which one is greatest. Looking first at the 5% stiffness degradation
contour, at time t= 0 (red), we can see that for low transverse loads the
line is vertical, showing that the transverse load does not affect crack
density evolution. This can be confirmed by inspecting Fig. 5, where it
is seen that the crack density in the 90° ply is barely affected by the
transverse load. Although the 45° and −45° layer are affected by the
transverse load, their effect on stiffness loss at low loads is much lower.
Similarly, the 5% contour line is horizontal when the transverse loads
are much higher, at which point the stiffness loss is dominated by
cracking in the 0° ply. Looking at the trends for the two other stiffness
contour lines, corresponding to a loss in stiffness of 10% and 15%, the
lines are more slanted. This is due to the effect that transverse loads
have on crack multiplication at high loading levels, in the +45° and

−45° layer. From inspection of the stiffness degradation contour lines
at the end of the creep simulations, it is clear that the lines have been
shifted to much lower values of stress. This suggests that the viscoe-
lastic-viscoplastic properties of the matrix affect the patterns of stiffness
degradation under uniaxial loading. For example, the 5% stiffness de-
gradation contour line starts at 125MPa of axial load, instead of
180MPa. Under transverse loading, the 5% stiffness degradation con-
tour line crosses the vertical axis at 80MPa when viscoelastic-visco-
plastic deformation has been taken into account, while it only crosses
the axis at 120MPa when creep viscoelastic-viscoplastic deformation is
ignored. These marked effects are due to two factors which affect the
multiplication of micro-cracks in the different plies of the laminate.
First, viscoelastic-viscoplastic deformation increases the driving force
for crack multiplication by increasing the amount of strain for a given
applied load. Second, under time-dependent deformation, the critical
energy release rate for crack multiplication (see Eq. (5)) degrades due
to the behavior of the matrix, which enhances crack multiplication

Fig. 7. Axial modulus degradation versus applied axial stress for (a) [0/90/∓45]s and (b) [0/90]s GFRP laminates, at the start of the creep tests, and at the end, for
different biaxial loads.

Fig. 8. The lines in the stiffness degradation contour map correspond to constant levels of stiffness loss before and after time-dependent deformation under biaxial
loading of (a) [0/90/∓45]s and (b) [0/90]s GFRP laminate.
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under constant loading.
In Fig. 8(b), we have shown the stiffness degradation contour lines

for the [0/90]s GFRP cross-ply, with the same ply properties as the [0/
90/∓45]s laminate. The contour lines correspond to 5%, 10% and 15%
stiffness loss in either the axial, Ex

0, or transverse, Ey
0, modulus. Looking

at the 5% stiffness loss line at time t= 0, we can see that the 5%
stiffness degradation occurs at 175MPa in the axial, and 100MPa in the
transverse direction. When viscoelastic deformation is taken into ac-
count (there is no viscoplasticity in the cross-ply because of the absence
of shear stress), 5% stiffness degradation occurs at 125MPa of axial
load, and 75MPa of transverse load. All the contour lines are slanted,
due to the effect of transverse loading on crack multiplication. This can
be explained by inspection of Fig. 6(b), where it can be seen that a
transverse stress causes crack density in the 90° ply to increase, for a
given axial load. In the case of the 0° ply, large transverse stresses cause
an enhancement in crack density, leading to further stiffness degrada-
tion. As for the [0/90/∓45]s laminate, the creep strains cause stiffness
degradation contour lines to be shifted to much lower stresses; the
shapes are also changed because of the creep strain deformation that
occurs in the laminate.

4. Conclusions

A continuum damage mechanics-based SDM model was developed
to incorporate the effects of viscoelastic-viscoplastic properties in GFRP
laminates. Schapery’s thermodynamics-based viscoelastic-viscoplastic
constitutive model was implemented in the framework of the SDM
model to investigate progressive damage by matrix micro-cracking in
laminates. After initial validation with available experimental data, two
GFRP laminates, namely [0/90/∓45]s and [0/90]s, were studied in this
work. The damage behavior was predicted under an initial quasi-static
step followed by viscoelastic-viscoplastic creep deformation under
biaxial loading. The laminate was quasi-statically loaded up to the
constant load level and then it was allowed to undergo creep at that
constant load.

It was observed that the presence of a transverse load can increase
the crack density compared to that under uniaxial loading. In the quasi-
isotropic laminate, an increase of transverse load from 0 to 180MPa
with a constant longitudinal load of 210MPa led to increase in crack
density from 0.6 cr/mm to 1.5 cr/mm in the 45° ply. In the 90° ply, on
the other hand, the crack density was barely affected when a transverse
load is applied. For a [0/90]s cross-ply, a transverse load for a given
axial load enhanced cracking in both plies.

The viscoelastic-viscoplastic deformation was found to reduce the
micro-cracking initiation stress for both laminate stacking sequences. In
the quasi-isotropic laminate, damage initiation was found at a uniaxial
load of 140MPa in longitudinal direction under quasi-static deforma-
tion. However, when viscoelastic-viscoplastic deformation was ac-
counted for, the damage initiation in the laminate was at 80MPa of
longitudinal uniaxial load. In the case of the cross-ply, the crack in-
itiation stress decreased from 150MPa to 80MPa when viscoelastic-
viscoplastic deformation was taken into account. For both stacking
sequences, an increase in transverse stress enhanced stiffness degrada-
tion.

To comprehensively quantify the damage under biaxial loading,
stiffness degradation maps were developed under different combina-
tions of axial and transverse loads. It was found that a given stiffness
degradation occurs at lower axial loading levels when a transverse load
is applied to the laminate. When the effect of creep was accounted for,
the level of stiffness degradation for a given biaxial loading scenario
was always more severe. Depending on the effect of transverse load on
the evolution of damage in the different plies of the laminates, the
slopes of the contour lines were different. Due to the extensive effects of
viscoelastic-viscoplastic deformation in these composites, the contour
lines describing the damage state after creep were shifted to lower
loads, indicating more significant damage, and underwent changes in

their shape, due to the time-dependent evolution in creep strain.
Taken together, these results demonstrate the ability of the SDM

model to predict time-dependent damage progression in viscoelastic-
viscoplastic laminates under biaxial constant loading. Through its
ability to accurately take into account biaxial loads, and to predict the
time-dependent damage progression in individual plies, the model
paves the way for the design of damage-tolerant composites structures
which can withstand more demanding thermo-mechanical environ-
ments.
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