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A B S T R A C T

Sensitivity analysis of Molecular Dynamics (MD) simulations has revealed that the predictions can be sensitive to
the small perturbations in Interatomic Potential (IP) parameters. In order to make MD predictions for complex
material systems more reliable, we performed uncertainty quantification of a high dimensional IP based on the
Embedded Atom Method (EAM), a commonly utilized IP for metallic systems. The major contribution of this
work is the prediction of a robust posterior probability distribution of the IP parameters by considering varia-
tions in the experimental values of various mechanical and thermal properties of FCC Al. The posterior prob-
ability distributions of the IP parameters were obtained using a Bayesian statistical framework. Reliability of
potential parameters was assessed by performing MD simulations for a range of mechanical and thermal
properties, using perturbed potential parameters. A comparison of the computed properties to existing experi-
mental and first-principles data revealed that higher order properties such as grain boundary formation energy
are sensitive (with variance of the order 105) to 1% perturbations. Using a Gaussian likelihood function, a
posterior probability distribution of the IP parameters that minimizes the discrepancy between MD prediction
and experimental values for various mechanical properties was obtained. Final properties of interest computed
using this new distribution showed less sensitivity to changes in the IP parameters. Furthermore, the obtained
posterior probability distribution reflects the uncertainty due to IP parameters and the quality of MD predictions
is improved by propagating that uncertainty to the final properties. Thus, instead of obtaining point valued
predictions from MD, probability distributions of the final properties are obtained using this framework.

1. Introduction

Atomistic simulation methods such as molecular dynamics (MD)
and density functional theory (DFT) have been labeled as computa-
tional microscopes for their ability to predict physical phenomena and
related properties at the nano-scale [1]. As with all models, MD models
are built on certain assumptions and their accuracy is affected by their
underlying structure and choice of key parameters. It has been shown
that changing input parameters and conditions for these models can
result in high variation in the final quantities of interest [2–4]. Hence, it
is crucial to quantify and reduce the uncertainty related to corre-
sponding model structure and parameters.

One of the key limitations of MD is its dependence on the accuracy
of the Interatomic Potential (IP) function, that defines the interactions
between atoms [4]. Normally, parameters of IP functions are fitted to
DFT calculations and experimental results for a limited number of

conditions, leading to a bias towards certain properties or towards
particular crystal structure or defects. As such, their transference to
structures or property prediction outside the calibration data set can be
questionable[4,5].

With the growing number of applications of MD, assessing the
sensitivities of predictions with respect to IP parameters is increasingly
important. Accounting for the uncertainties arising from the potential
fitting procedures is also gaining attention [6–8]. Earlier work on the
effect of potential parameters on final property prediction has been
mostly done through sensitivity analysis (SA). In Wong et al.’s work [9],
SA techniques were applied to identify the important parameters during
the free energy prediction of amino acids using the Gromos potential.
The results from this paper [9] led to experiments focused on accurately
determining ionic charges; resulting in better potentials. Determination
of important potential parameters through SA has also been the focus of
a study involving Leonard Jones (LJ) liquid [10]. Kristof and Liszi [11]

https://doi.org/10.1016/j.commatsci.2019.03.060
Received 12 December 2018; Received in revised form 16 March 2019; Accepted 31 March 2019

⁎ Corresponding author at: Department of Materials Science and Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada.
E-mail addresses: gurjot.dhaliwal@mail.utoronto.ca (G. Dhaliwal), pbn@utias.utoronto.ca (P.B. Nair), chandraveer.singh@utoronto.ca (C.V. Singh).

Computational Materials Science 166 (2019) 30–41

0927-0256/ © 2019 Published by Elsevier B.V.

T

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2019.03.060
https://doi.org/10.1016/j.commatsci.2019.03.060
mailto:gurjot.dhaliwal@mail.utoronto.ca
mailto:pbn@utias.utoronto.ca
mailto:chandraveer.singh@utoronto.ca
https://doi.org/10.1016/j.commatsci.2019.03.060
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2019.03.060&domain=pdf


applied the ideas of SA to the 3-centered model of liquid CS2 and
identified the most sensitive IP parameters leading to better fitting of
these parameters. Other important SA studies focused on similar sys-
tems where the number of parameters were less than 3 [12–14]. As a
proactive approach, Tschopp et al.[7] used SA methods for under-
standing the effect of IP parameter variability on formation energy
values for the Fe-He system. The framework they provided can be used
during the potential development stages, leading to robust IP parameter
sets. In contrast, the present study observed that for FCC Al, lower order
properties like formation energies do not vary much based on IP
parameter changes; it is the higher order properties that are more
sensitive. Another difference between the current work and the work
done by Tschopp et al. [7], lies in the use of surrogate models, which
considerably reduces the computation time as compared to full MD
simulations. The effect of parameter variability on final quantities of
interest (QOI) was done using ANOVA based methods for hydrocarbons
by Tschopp et al. [8].

Frederiksen et al. [15], applied concepts from Bayesian statistics to
estimate error bars on properties predicted through MD. They com-
pared three different potentials and assigned independent normal
likelihood to the model discrepancies from DFT or experiment values.
Working along similar lines, Rizzi et al.[16] used Bayesian methods to
understand the effects of parameters on the charge distribution of silica
nanopores. Sensitivity of output quantities w.r.t IP parameters has also
been analyzed for water [17] and in the field of biophysics [18]. As an
application of Bayesian inverse methods, Rizzi et al.[19] extended their
previous work in [16] by calibrating the input potential parameters
using polynomial chaos expansions. Cailliez et al.[20] used Bayesian
methods to calibrate the LJ potential parameters for argon, by max-
imizing the posterior probability. Similar methods for parameter cali-
bration have also been implemented in [21,22] and a detailed review
regarding parameter sensitivity and calibration can be found at
[6,23,24].

In contrast to probabilistic uncertainty quantification methods, Tran
et al.[25] used the interval based approach for uncertainty analysis in
EAM potentials. This method was applied to aluminum and the stress –
strain curves corresponding to different interval schemes were com-
puted. Working on a similar material system, we applied a non-in-
trusive methodology and assessed the sensitivity of a number of me-
chanical and thermal properties.

In the present work, we study sensitivity in mechanical and thermal
properties of FCC Al as predicted through the EAM potential by Mishin
et al. [26]. Basic splines are fitted on tabulated values in [26] and
uncertainty is introduced in the fitted parameters, followed by un-
certainty propagation to the final quantities of interest (QOI). It was
observed that QOI computed through EAM are sensitive to small
changes in the IP parameters. On perturbing the IP parameters by 1%,
basic properties such as the lattice constant remained within 0.5% of
the original fitted values but higher order properties such as grain
boundary formation energy showed variation as high as 85% of the
original fitted values. The computational effort required for sensitivity
and uncertainty analysis was eased by approximating MD simulations
through models based on Gaussian processes. Using a Bayesian frame-
work, a posterior probability distribution of each parameter which is
consistent with experimental measurements of a range of mechanical
and thermal properties was obtained.

High-dimensional posterior distributions were approximated
through a Markov Chain Monte Carlo (MCMC) scheme. The likelihood
function was designed to minimize the discrepancy between experi-
mental values and MD predictions for a range of mechanical properties.
Finally, the obtained posterior distribution was used to propagate un-
certainty in the thermal properties that were not used during MCMC
sampling. It was observed that probability distributions of both the
property sets, mechanical and thermal, were almost normal with var-
iance within experimental tolerance. Uncertainty Quantification
models, as described in this study, capture the noise due to

experimental measurements as well as uncertainty due to fitting of IP
parameters, which is propagated to QOI, thus making MD predictions
more reliable.

2. Methodology

2.1. Molecular dynamics – Theory

In classical MD, the interactions between the atoms and molecules
are described by Newton’s equations of motion. The force acting on the
ith particle, Fi, can be approximated as, = …F U r r( , )i r N1i , which is the
gradient of the potential energy between N interacting atoms. One of
the key components of a MD simulation is the function that approx-
imates the interactions between the atoms. The potential function can
have various functional forms like pair potentials, Embedded Atom
Method (EAM) or Modified EAM [27]. Complex potentials like EAM are
used to predict the properties of FCC metals. The present work focuses
on EAM potential for aluminum developed by Mishin et al. [26] and
considers the sensitivity of QOI w.r.t the parameters in this potential. A
more detailed description of the EAM potential is provided in sup-
porting information.

2.2. Potential fitting

The EAM potential as formatted in LAMMPS setfl format [28],
documents 10,000 points for embedding function. It will not be prac-
tically plausible to perform a meaningful uncertainty analysis on the
10,000 parameters. Instead, we fitted a number of spline functions to
these 10,000 points and the parameters of the best spline (having
lowest normalized root mean square error, 10 9) are labelled as un-
certain parameters. The optimal spline function generates the embed-
ding function values for different values of the interatomic distance,
which are input into LAMMPS to compute the different properties. On
comparing the results from the fitted spline to the one published in
[26], the maximum error was found to be less than 1.5%. The splines
obtained in this manner has 11 parameters in total with 7 knots. These
11 parameters will be varied in the manner described below and their
effects on the final properties will be analyzed. As these parameters are
derived through spline fitting, they don’t carry any physical meaning.
Further, it has been shown that the choice of the spline interpolation
can affect the values of certain properties of interest [29]. In this paper,
we have fitted a basic spline of degree 3 with an error as low as 10 9.
The effect of parameters of the other interpolated splines can be part of
another study, where the methods presented here can be readily ap-
plied.

2.3. Quantities of interest

We computed a number of QOI through MD simulations and studied
the sensitivity of MD predictions as a function of uncertainties in the IP
parameters. The details of the simulation methodology for each QOI is
provided in the supporting information. Details about simulations cells
are documented in Table 1 and atomic snapshots are as shown in Fig. 1.

A summary of the methodology used for MD simulations is provided
herein while more details are provided in the supporting information.
To compute the interstitial formation energy an extra atom is inserted
at an octahedral site. The resulting structure is minimized and energy
difference is recorded as Interstitial formation energy. Further, two
surfaces are simulated in the cell along (001) and (001̄) atomic planes
and energy difference from the perfect crystal is recorded as Surface
energy. Stacking fault is generated by shearing of the crystal along 112
direction. We simulated a 5 grain boundary along (310) atomic plane
with tilt axis along 001 direction. The misorientation angle is 34.5°.

Also, Table 2 compares the values of the QOI computed using EAM
to experimental, DFT and other MD studies in the literature. Compar-
ison with other MD studies provides additional validation of the
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simulations conducted in this study.

2.4. Design of the UQ study

In the present work, we employ the Bayesian methodology pre-
sented in [50]. Following the same notation, we denote Ytrue as true
value of a QOI, which is related to the experimental or DFT observation
value Yobs through the following relation

= +Y Y ,obs true MN (1)

where MN is the measurement error. For a particular IP parameter set ,
the true value of a QOI is related to the MD observation,Y ( )MD through
the following relation

= +Y Y( ) ,MD true MD (2)

where MD is the MD noise, arising due to different initial atomic ve-
locities, autocorrelation lengths, temperature and system configura-
tions. The goal is to find the posterior distribution of the IP parameter
set given the observed quantity Yobs, which is approximated through
Bayes theorem using the equation below

p Y p Y p( | ) ( | ) ( ).obs obs (3)

To align Y ( )MD closer to Yobs, the error terms MN and MD are
combined into a single error term Noise. Assuming Noise to be gaussian
distributed with zero mean and variance Noise

2 , the likelihood takes the
following form

p Y exp Y Y( | , ) ( 1/ [ ] ).obs Noise Noise obs MD
2 2 2 (4)

Note that computing the likelihood can be expensive and requires
running a full-fledged MD simulation, which can increase the compu-
tation time. In order to circumvent this computational burden,Y ( )MD is
approximated using an efficient surrogate modeling technique based on
Gaussian Processes (GP) [51–53]. With applications ranging from
image recognition to aerospace design, GP models are providing useful
inferences to high-dimensional problems [51–53]. In the present study,
training of GP models is done using MD simulation data (based on EAM
potential [26]) and model performance is assessed through cross-vali-
dation measures such as the leave-one-out error and by standard cross
validation residual.

Inference or output from a GP model is the mean posterior predic-
tion µ ( )GPM and corresponding posterior variance ( )GPM

2 .
Incorporating these two quantities results in the following expression
for the likelihood

p Y Y µ Y µ( | , , ) exp( [ ( )] [ ( )] ),obs Noise GPM obs GPM obs GPM
T2 2 1

(5)

where is the diagonal matrix with each element as sum of the var-
iance of the GP prediction, ( )GPM

2 and overall noise, Noise
2 . A MCMC

scheme is used to compute the posterior distribution of the IP para-
meters, as detailed in the results section.

3. Results and discussion

3.1. Perturbation of IP parameters through Sobol sequence

Fitting parameters of the spline function are varied using the
methodology as presented in [50]. A set of 500 points is generated
using the Sobol sequence [54,55] and all the potential parameters are
varied using the equations below and as presented in [50]. Based on the
percentage variation, , a range for IP parameter set, , is defined as

= = +(1 ); (1 ) {0.01%, 0.1%, 0.3%, 0.5%, 1%},min max

(6)

Using the above range, each parameter is varied through the following
relation

= + …SP i N( ) {1, 2, },i min max min i (7)

where SPi is the ith sobol point for a percentage variation of and N is
the total number of stochastic IP parameters generated using the above
relation. Based on the above relation, a set of N =500 random vectors
is generated. Each vector in the set is of dimension 11, same as number
of parameters in the fitted spline. For each of the 500 vectors, MD si-
mulations were performed using LAMMPS [28] and respective values
for each QOI were obtained.

3.2. Sensitivity analysis results

We started the analysis by computing fundamental QOI such as
cohesive energy and lattice constants for each setting of the IP para-
meters. Fig. 2 details the boxplots of these quantities at different levels
of uncertainty. It can be seen that even high variations of 1% in the
potential parameters lead to very small changes in the cohesive energies
and lattice constant values. This observation confirms that even with
the large changes, system remains physical and thus justifies the use of
these potentials for the computation of higher order properties. For
uncertainty levels of 1%, the values ofC11 andC12 remain within 10% of
the original values. C44 values are sensitive to the variation in the po-
tential parameters but the range of output remains within 20% of the
original values. Physical insights gained from the numerical studies are
presented in the supporting information.

As shown in Fig. 3 and Table 3, QOIs such as the vacancy formation
energy exhibit a maximum deviation of 23% from the original MD
prediciton (calculated using original parameters and reported in
Table 1) while QOIs like interstitial formation energy are not that
sensitive to changes in the potential parameters. A number of outliers
have been observed for QOIs like surface energy and stacking fault
energy at equal to 0.5%. As we increase the value of , the number of
outliers keep increasing for both the quantities. Phonon conductivity
computed using the Green–Kubo [56] method also showed variation
with highest percentage change of 22% from the original MD prediction
(Table 1). Grain boundary formation energy showed highest sensitivity
with deviation as high as 293% from the original MD prediction
(Table 1). Grain boundary energy values for certain parameter sets are
negative in magnitude, which are not physically meaningful. For all the
properties measured, the mean value of the quantity of interest remains
close to the reference values, as shown by the red lines in the box plots,
but variation increases as we increase the uncertainty range of the IP
parameters. Using a kernel density estimation procedure [57], prob-
ability distribution of the QOI was obtained and plots are presented in
supporting information.

The stress–strain response for three realizations of the random IP
parameters are shown in Fig. 3(f). It can be easily verified that the
change in potential parameters is accompanied by the variation in ul-
timate tensile strength (UTS) and failure strain (defined as the strain
where fracture occurs or sharp drop in Stress–Strain curves). Uniaxial
tests were performed using 10 random vectors from the stochastic po-
tential set. For brevity, results for three of them are shown in Fig. 3(f)

Table 1
Details about simulation box and number of atoms for each MD simulation of
FCC Aluminum. Lengths of simulations box is denoted by L L L, ,X Y Z . All si-
mulations are performd at 0 K.

Properties AL ( )X o AL ( )Y o AL ( )Z o Number of atoms

Cohesive energy (eV) 8.0 4.0 4.0 8
Lattice constant (Ao) 8.0 4.0 4.0 8
C11 (GPa) 8.1 12.15 16.2 96
C12 (GPa) 8.1 12.15 16.2 96
C44 (GPa) 8.1 12.15 16.2 96
Vacancy (eV) 32.4 32.4 32.4 2048
Interstitial (eV) 32.4 32.4 32.4 2048
Surface energy (mJ/m2) 40.5 24.3 40.5 2400

Stacking fault energy (mJ/m2) 49.6 28.64 36.58 3200

Grain boundary (mJ/m2) 51.23 128.07 4.05 1592
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and compared to the pristine curve, produced using the parameters
from Mishin [26]. Although the linear region remains the same as that
of the pristine curve, differences can be observed in the values of UTS
and failure strain.

The focus of the present study is to analyze the sensitivity in the QOI
values based on variation in the IP parameters. Apart from IP para-
meters, there are number of other factors, such as size of the simulation
cell that may affect the QOI values and their suitable representation is
necessary in every MD study. In order to evaluate the effects of these
factors on the final property values, a set of MD simulations were car-
ried out by varying size and atomic velocities. Of all the parametric
studies performed on each QOI, phonon conductivity calculations

through the Green–Kubo(GK) method exhibited the highest variation.
The variation is within 7% of the mean value and will be captured by

Noise
2 as described in the previous section. Considering different initial
atomic velocities, system size and auto-correlation lengths, separate
sensitivity analysis of phonon conductivity w.r.t variation in IP para-
meters was performed. It was verified that the sensitivity of phonon
conductivity due to IP parameters was identical for different combi-
nations of input factors. For brevity, sensitivity analysis is presented for
a single initial atomic environment.

Fig. 1. Figure showing the various quantities of interest for FCC Al computed through MD simulations. Inset (a) shows the vacancy created in the simulation box.
Vacancy is shown surrounded by high energy atoms (colored red). (b) Interstitial atoms (colored red) are located in one of the locations inside the lattice (c) The grain
boundary is depicted by high energy atoms (colored red, green and yellow) (d) Stack fault is in the middle of simulation cell with one layer missing. (e) The
simulation box under uniaxial tensile test with atoms colored according to the centro-symmetry parameter. The atoms in the grey denotes bond break with cavities
nucleating around them.
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3.3. Correlation between inputs and outputs

To analyze the sensitivity of each QOI w.r.t each parameter, scatter
plots for each combination of QOI and parameter were analyzed. Fig. 4
shows the most influential parameters and corresponding variation of
the selected properties. A clear linear trend for the quantities like co-
hesive energy, C11 and C12 can be observed from Fig. 4. Another inter-
esting inference can be drawn that variance is almost constant for a
particular IP parameter value for these three quantities. The mean

values for cohesive energy and C12 are increasing as we increase 4 and
5 respectively, while value of C11 is decreasing as we increase 5. Stack
fault energy values although depicts an image of negative exponential,
most of the parameter sets report values closer to 145 mJ m/ 2.

Another method to assess the sensitivity of each parameter on the
final QOI is to compute the sensitivity indices. The details to compute
these indices are documented in the supporting information. Using the
equations provided in supporting information, sensitivity indices were
computed. It was inferred that none of the parameters were influential

Table 2
A comparison of various quantities of interest computed through MD to the corresponding experimental and DFT values. The last column shows the values computed
using the EAM potential [26].

Properties Experiment DFT MD MD (Mishin Potential)

Lattice constant (Ao) 4.05[30,31] 4.06[32], 4.04[33] 4.05[34] 4.05
Cohesive energy (eV) −3.36[35] −3.42[33] −3.36[34] −3.36
C11 (GPa) 114 [36] 98 [37], 111 [38] 114.3 [39] 113.84
C12 (GPa) 61.9 [36] 57 [37], 56 [38] 61.9 [39] 61.59
C44 (GPa) 31.6 [36] 29 [37], 32 [38] 31.6 [39] 31.59
Vacancy (eV) 0.64–0.73 [34,40] 0.66 [32], 0.56 [41,42] 0.67[43], 0.68 [39] 0.676
Interstitial (eV) 3.0 [44] 2.878 [32] 2.49 [39] 2.79
Surface energy (mJ/m2) 1,085.0 [45] 969 [43], 948 [39] 946.6

Stacking fault energy (mJ/m2) 120 [46] 146 [47], 126 [38] 119 [34] 145.22

Grain boundary (mJ/m2) 500 [48] 567.57
Phonon conductivity (W/mK) 11.144
UTS (GPa) 7.721
Young’s modulus (GPa) 68 [49] 68 [37] 55 [37]
Fracture strain (mm/mm) 0.1405

Fig. 2. Boxplots showing the results of various QOIs. Horizontal axis denotes different values of considered in this study. For equal to 1%, basic properties such as
cohesive energy and lattice constant do not show high variation as compared to (e) C44 with 20% of variation at = 1%. QOI as Grain boundary formation energy
exhibits a variation of the order of 105 at = 1%. The red solid line in each plot shows the mean value of each QOI obtained.

G. Dhaliwal, et al. Computational Materials Science 166 (2019) 30–41

34



for the QOI considered in the present work.
Correlation between different QOI are assessed through computa-

tion of the Pearson coefficient. Properties showed respective trends
with each other that can be exploited for better IP parameters fitting.
Plot of the correlations coefficients and related trends are presented in
the supporting information.

3.4. Gaussian process modeling

In the present work, we used GP models with zero mean prior for
each QOI. Structure of the covariance function was specific to each QOI,

as detailed in Table 4. Further, performance of each GP model is as-
sessed through cross-validation methods. In the present work, we em-
ployed Leave-one out (LOO) and standardized cross-validation residual
(SCVR) methods for performance assessment.

The dataset generated using Sobol sequences has IP parameters
having uniform distribution. Using a subset of the same dataset, GP
models are trained for each QOI. Fig. SI 4 in supporting information
shows plots of GP predictions vs MD simulation result for each QOI.

Table 4 shows the r-squared values of the GP predictions vs MD
simulation fit for the best fitted GP model. Each QOI except surface
energy shows high r-squared values depicting the linear relationship

Fig. 3. Boxplots showing the variation in the various defect formation energies for Al. QOIs shown are (a) Vacancy Formation energy (b) Interstitial Formation energy
(c) Surface energy (d) Stacking Fault energy (e) Stress-Strain curves for the uniaxial tensile test performed on Aluminum block. Results of three realizations are
compared against the stress-strain curve obtained by using the parameters of Mishin [26] (shown in red).

Table 3
Table showing the detailed results for the sensitivity analysis of various quantities of interest for 500 random potential parameters with variation( ) of 1% from the
reference values. The range column depicts the difference between minimum and maximum value of each QOI. Of all the QOI, grain boundary formation energy
showed the highest variance.

Property Mean Minimum Maximum Range Variance

Lattice constant 4.049 4.027 4.0716 0.045 10 5

Cohesive energy −3.36 −3.386 −3.333 0.054 10 4

C11 113.668 106.679 120.652 13.972 8.245
C12 61.316 53.524 70.119 16.595 12.313
C44 31.748 28.513 35.937 7.424 2.585
Phonon conductivity 11.284 9.275 13.509 4.234 0.653
Vacancy 0.675 0.524 0.823 0.299 0.004
Interstitial 2.788 2.733 2.843 0.110 0.001
Stacking fault energy 140.774 106.463 147.214 40.751 61.188
Surface energy 950.155 893.622 1137.881 244.259 818.188
Grain boundary 570.69 −1041.088 2235.16 3276.248 400612.6
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between GP predictions and corresponding MD simulations. For each
property, the best surrogate model gave zero as SCVR values. Assessing
the normalized root mean squared error and r-square values, it is

evident that GPs provide reliable approximation to computationally
intensive MD simulations. The performance is not great for the surface
energy, possibly due to the presence of large number of outliers. This
issue can be dealt by considering a larger training set for this QOI.
Further, the choice of covariance function also plays a significant role
and the best performing covariance functions are detailed in Table 4.
The last column in the table provides the normalized root mean square
error of GP predictions vs. MD simulations, considering the entire set of
500 simulations. For all the properties, the error is less than 0.2.

3.4.1. Posterior predictive checks of the trained GP models
GP models developed in the last section were evaluated on the IP

parameters from sensitivity analysis section. The statistics for the GP
predictions of each QOI are shown in Table 5.

Comparing the GP predictions to the properties predicted through
full MD simulations, we can see that E µ[ ( )]GPM differs from corre-
sponding MD prediction by less than 0.01%, which can be easily ne-
glected. The expected variance in the GP predictions is very low for

Fig. 4. Scatter plots of QOI with respect to important parameters. Not clear trends were found from the QOI vs parameter plots. IP parameter such as, 5, depicts a
decreasing trend for C11 but the same parameter shows increasing linear trend for cohesive energy.

Table 4
Root mean square error (RMSE), r-squared and normalized RMSE between GP
prediction and MD prediction.

Property Kernel RMSE R-Squared Normalized RMSE

Cohesive energy Exponential 0.011 0.982 0.196
Lattice constant Exponential 0.0097 0.971 0.217
Vacancy Exponential 0.061 0.841 0.202
Interstitial Exponential 0.023 0.891 0.2066
Surface energy Deep GP [58] 13.602 0.78
Stacking fault energy RBF 0.0599 0.999 0.002
C11 RBF 0.454 0.975 0.033
C12 Matern32 0.342 0.991 0.021
C44 RBF+RBF 0.086 0.997 0.012
Grain boundary RBF (MCMC) 26.0 0.9983 0.008

Table 5
Posterior distributions of the corresponding QOIs. The above QOIs are computed on the 500 points from the previous section. For notational brevity, z ( ) denotes the
µ ( )GPM in this table. The last column denotes the variance in expected value of GP prediction for a QOI.

Property zE[ ( )] zmin( ( )) zmax( ( )) Range E[ ( )]2 zvar( ( ))

Cohesive energy -3.360 -3.385 -3.334 0.005 10 6 10 4

Lattice constant 4.050 4.026 4.069 0.004 10 7 10 5

Vacancy 0.676 0.543 0.823 0.028 10 5 10 3

Interstitial 2.788 2.737 2.832 0.009 10 6 10 4

Surface energy 948.862 901.817 1079.522 177.705 33.084 538.458
Stacking fault energy 140.795 95.982 147.252 51.27 10–6 61.79
C11 113.674 106.579 120.309 13.73 0.0212 7.51
C12 61.323 52.058 70.479 18.42 0.014 11.67
C44 31.737 28.121 36.809 8.69 10–5 2.55
Grain boundary 572.761 -1036.24 2153.360 3189.6 10.476 406792.789
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most of the QOI, showing that GP models are very certain about the
mean values. Sensitivity in the QOI is captured through variance in the
mean values, which is high for higher-order properties such as stack
fault energy and grain boundary formation energy. Probability dis-
tributions for each QOI’s GP prediction is obtained through kernel
density estimation procedures and the plots are presented in the sup-
porting information. GP models are also used to obtain the probability
of having a value of QOI within specific range. It was observed that

probabilities obtained from 10,000 GP samples were very close to the
ones assessed through 500 MD simulations. Details about the prob-
abilities are presented in supporting information. Scatter plots similar
to Fig. 4 were obtained for GP predictions as well. GP predictions follow
similar trend as observed in Fig. 4, i.e. 5 and 6 contribute to highest
property variation. In contrast to scatter plots, the first order sensitivity
indices and total sensitivity indices do not indicate any major para-
meter or any significant interaction effects.

Fig. 5. Figure showing the posterior distribution of each parameter. Posterior IP parameter values are plotted along x-axis, with corresponding density distribution
along y-axis. The black dashed line shows the original reference fitted value. Parameters like , , , ,3 4 5 6 8 had posterior probability which does not include the
initial reference value. Prior used for the MCMC simulations is uniform prior with 1% variation to the initial reference values.
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In conclusion, GPs provided a reliable and accurate approximation
for the MD simulations, which can be run at a relative less computa-
tional cost. Further, a small set of MD simulations was used to train GP
model, thus reducing the computational effort as required by Monte
Carlo studies.

3.5. Posterior sampling through Markov Chain Monte Carlo algorithm

The posterior distribution for each parameter is approximated
through a MCMC scheme using the python library PyMC3 [59]. We
used a uniform distribution as prior and Gaussian likelihood as de-
scribed in the previous section. Two independent MCMC chains with
length 80,000, are drawn for each parameter and their convergence is
assessed through various methods. From the trace plots and through
computation of Gweke’s indices, it was determined that chains for the
parameters have converged. Additional analysis of the auto-correlation
plots for different lag lengths further confirm the convergence of the
MCMC chains.

Fig. 5 shows the posterior probability distribution for each para-
meter, with black dashed line showing the original fitted value. From
the Fig. 5, it is clear that not all the parameters have the true reference
value within the posterior probability distribution. High posterior
density intervals for certain parameters, notably ,3 6 do not include
the original fitted parameter values. The quantitative differences be-
tween different statistics of posterior distribution with respect to the
original fitted values are summarized in Table 6. Also compared are the
percentage variation of the mean, minimum, maximum values of pos-
terior from the true reference values.

Although variance of the individual posterior distribution is very
low, the mean of these parameters differs as high as 0.8 %. Further, the
range of these parameters is as high as 1%. A possible reason for this
variation is the use of experimental value of QOI. As the MCMC scheme
is trying to minimize the error defined by likelihood function, only
those IP parameter values are selected which can provide MD or GP
model’s predictions closer to the corresponding experimental values.

To perform the posterior predictive check, a sample of 1000 IP
parameters are obtained from the posterior distribution and corre-
sponding GP models are used to obtain the respective distributions of
each QOI. The obtained distributions are as shown in Fig. 6. It can be
observed that values for each QOI shows little scatter and percentage

change from respective mean values is less than 2%. For each QOI,
Table 7 compares the mean of GP predictions, E µ[ ( )]GPM , to the
corrspondingYobs values. It can be observed that GP predictions for most
of the QOI lie closer to their respective experiment values. Variance in
the GP predcitions (performed for 1000 posterior IP parameters) is
considerably lower than the ones presented in Table 3, thus leading to
reduction in sensitivity. Further, we observed that mean of the GP
predictions for stacking fault energy is different than Yobs. Since GP
predictions for this QOI have very low expected variance (10 8), it can
be concluded that this difference from Yobs is either due to measurement
error (captured in the expected value of measurement noise) or through
the inherent uncertainity in the model structure for EAM potential.

Combining the uncertainties from GP approximation and measure-
ment noise, QOIs like grain boundary energy, surface energy and stack
fault energy were found to be highly uncertain quantities. Possible
explanation for the high surface energy is that its experimental value is

mJ m1085.0 / 2 and MCMC scheme is trying to find parameters that can
predict surface energy closer to corresponding experimental value.
Given the functional form of the IP function, it might not be possible to
reproduce experimental values of the surface energy and thus higher
expected variance of GP predictions. To reduce this error, more ex-
perimental observations are needed or uncertainty due to functional
form of IP functions need to be considered. Uncertainty due to func-
tional form of IP can be reduced by using machine learning based in-
teratomic potentials [60–62].

3.6. Posterior distribution predictions for the unknown quantity

In this section, we used the posterior distribution of the IP para-
meters to estimate the probability distribution of the QOI not included
during MCMC sampling. Using LAMMPS, MD simulations for phonon
conductivity based on Green Kubo [56] method were performed and
the dataset was used to obtain a corresponding GP model. Using this GP
model, probability distribution of phonon conductivity is obtained by
using posterior distribution of each IP parameter. Fig. 7 details the
distribution of phonon conductivity (a) for initial Sobol sample space as
described in the previous sections (b) for posterior distribution as ob-
tained though MCMC scheme.

As shown in the Fig. 7 (a), phonon conductivity values through MD
showed variation of 20% from the mean values. In contrast, the prob-
ability distribution of phonon conductivity obtained by using the pos-
terior distribution of the IP parameters depicts a maximum variation of
1.2% from the mean value.

In conclusion, the posterior distributions of the IP parameters ob-
tained through the Bayesian framework (using MCMC) is robust to-
wards experimental values of the QOI. Further, the new IP parameter
distributions can output values of the QOI not included during MCMC
sampling within measurement tolerance.

4. Conclusion

This work explored the sensitivity of output QOIs with respect to
variation in interatomic potential parameters. Results from Quasi
Monte Carlo schemes show that basic properties such as cohesive en-
ergy and lattice constant do not vary much with changes in the IP
parameters. Conversely, defect formation energies such as grain
boundary formation energy showed very high variation in their final
property values. A considerable number of outliers were observed in
stack fault energy and surface energy, mostly attributed to changes in
atomic structure. These observations exhibit the sensitive nature of
EAM potential. To identify the robust parameter sets of EAM potential,
Bayesian methods were used which require large number of MD si-
mulations. Surrogate modeling was applied to reduce the computa-
tional costs involved with MD studies. Efficient GP models reduced the

Table 6
Statistics for posterior distribution for each parameter. The first row of this
table denotes the reference or the original fitted IP parameter values. Second
row details the mean values of the posterior distribution of IP parameters, as
obtained from MCMC scheme. The percentage change of the mean values
( %mean ) from the reference values are detailed in subsequent row. Following
two rows details the percentage change in minimum %min and maximum %max
of the posterior distribution from the reference values.

Metric 1 2 3 4 5 6

Original −4.171e−10 −1.417 −1.984 −2.537 −2.766 −2.689
Mean −4.17e−10 −1.424 −1.956 −2.546 −2.768 −2.685

%mean 0.02 0.49 0.95 0.36 0.07 0.18
%min 1.0 0.99 0.64 0.64 0.15 0.027
%max 0.99 0.27 0.99 0.065 0.05 0.28

Variance 10 24 10 5 10 7 10 5 10 7 10 7

Metric 7 8 9 10 11

Original −2.684 −2.685 −2.731 −2.474 −2.076
Mean −2.696 −2.66 −2.753 −2.455 −2.089

%mean 0.46 0.94 0.82 0.78 0.62
%min 1.0 0.56 1.0 0.04 1.0
%max 0.59 1.0 0.11 0.99 0.21

Variance 10 5 10 7 10 5 10 5 10 5
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computational cost by requiring only one fifth of the number of simu-
lations as required in initial sensitivity analysis. The MCMC scheme
provided the posterior probability distribution of IP parameters that are
robust to experimental results. Using posterior probabilities of the IP
parameters, a predictive check was performed on the material property
(phonon conductivity) that was not included in the training of the
MCMC model. The probability distribution of phonon conductivity was
within 1.2% of its mean showing less sensitivity than the analysis based
on Sobol sequence. Using this framework, a reliable estimate of MD
predictions can be obtained which is robust towards the variation in IP
parameters.

Data availability

The raw/processed data required to reproduce these findings cannot
be shared at this time as the data also forms part of an ongoing study.

Fig. 6. Box plots of QOI w.r.t 1000 random sample points from posterior distribution of IP parameters. Values of each QOI are within experimental bounds.

Table 7
Comparison of GP predictions on a sample of size 1000 from posterior dis-
tributions of each IP parameter. First column denotes experimental values as
copied from Table 2, except for grain boundary energy. For grain boundary
energy, we used MD prediction by EAM potential as Yobs. In comparison, E z[ ( )]
values are very close to the Yobs except stacking fault energy. This variance has
been captured in Noise

2 .

Property Yobs zE[ ( )] zvar( ( )) E [ ( )]GPM
2 E [ ]Noise

2

Cohesive energy -3.36 -3.36 10 8 10 7 0.092
Lattice constant 4.05 4.06 10 7 10 7 0.13
Vacancy 0.66 0.64 10 5 10 5 0.17
Interstitial 3.0 2.82 10 6 10 6 0.38
Stacking fault energy 120 141.29 0.74 10 8 3.27
Surface energy 1085.0 1022.99 25.17 403.1 0.4
C11 114 112.65 0.09 0.21 0.66
C12 61.9 61.17 0.09 0.143 0.49
C44 31.6 30.89 0.012 10 5 0.65
Grain boundary 567.57 582.63 36.04 10.99 0.39
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