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a b s t r a c t

AIREBO is one of the commonly utilized interatomic potential (IP) for performing molecular dynamics
(MD) simulations of graphene and carbon nanostructures. With its parameters fitted to a limited dataset,
property prediction outside of the original training set can be challenging and can lead to uncertainty in
the predicted values. This is especially important for 2D materials such as graphene which have limited
experimental data and have widely varying predicted properties in the literature. In this study, we
conducted a comprehensive Uncertainty Quantification (UQ) analysis of AIREBO potential parameters
and their corresponding effect on the predicted properties of graphene. We found that computed output
properties were highly sensitive to small variations in IP parameters. For instance, a 0.5% change in IP
parameters led to a 66% change in the predicted elastic constants. Based on our UQ analysis, we
developed a new robust IP parameter set for the AIREBO potential with significantly reduced sensitivity
towards output properties. The robust parameters were derived using a Markov Chain Monte Carlo
scheme, considering gaussian noise in available DFT data. We were also able to obtain realistic error bars
on MD predictions by using posterior probability distributions and propagating the underlying variance
to the final properties.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Molecular Dynamics (MD) simulations play an increasingly key
role in understanding the structure-property relationships of
nanomaterials such as graphene and carbon nanostructures. MD
simulations utilize interatomic potential (IP) energy functions that
are mathematically fitted to a set of quantum chemistry and
experimental property data. Numerous IP functions which address
specific types of substances or properties have been created. The
same IP is often used to simulate a variety of disparate properties
varying form thermal conductivity to mechanical elasticity or
chemical reactivity for the same material.

Modern MD simulations generally rely on many body potentials
which can have dozens of adjustable parameters required to be
fitted to data. This has led to increasing interest in uncertainty
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quantification (UQ) of MD simulation predictions [1e3]. UQ can be
crucial for simulations of 2D materials which are difficult to test
experimentally and whose impressive properties are often pre-
dicted based on MD simulations. Graphene, which shows com-
mercial potential in diverse areas such as battery anodes, gas and
bio-sensors, field effect transistors [4e9], is a prime example of a
material extensively studied through MD simulations. The AIREBO
potential, developed by Stuart et al. [10], is one of the most
commonly utilized IP to simulate graphene and carbon nano-
structures. Originally created for hydrocarbons, the AIREBO po-
tential is fitted to a relatively old, structure-property database
involving density functional theory (DFT) or experimental values
for substances such as graphite and methane (but not including
graphene).

As an example of the difficulty in obtaining predictive values for
graphene, the experimental and simulation results for mechanical
properties of graphene contain huge variation [11e13]. Variation
specific to atomistic models has been observed for DFT versus MD
values for C12 of graphene where DFT predicts its value to be 65 N/
m [14] while MD studies predict it to be 98 N/m [15]. Depending on
the input parameters, surface states and disorders, unusual
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transport properties are predicted [16]. In light of these highly
varying predictions and limited experimental data for graphene, it
is critical to perform UQ [17,18] for the MD simulation models
parameters.

Studies have indicated that parameterization of these IP func-
tions has been a cause of transferability issues [19,20]. Fittings of
these parameters are based on the most likely value which gives
little information about distribution of the parameters itself. If the
most likely value is the Maximum a Posteriori (MAP) value, it can
lead to significant overfitting. Thus, a critical question arises: How
do the final properties of interest change with variation in the IP
parameters from MAP estimate? And how much variation can be
expected in these parameters? In other words, what is the proba-
bility distribution of these parameters given the experimental ob-
servations. Answers to these questions are critical as it has been
shown in earlier works that the final properties are sensitive to the
changes in the IP parameters [21e26]. Even the simple Lennard-
Jones potential with only two parameters revealed very high
sensitivity towards free energy values for amino acids and CS2
[21e23]. As a first application of Bayesian methods to this problem,
Frederiksen et al. [27] compared the performance of an ensemble of
IP, given the uncertainty in the corresponding IP parameters and
propagated this uncertainty to the final predictions. The work in
Refs. [28,29] applied similar ideas to different material systems.
Parameter calibration through inverse Bayesian methods has also
been addressed for simpler models like water [30] and argon sys-
tems [31] where number of IP parameters was less than 4. Further
investigations to address this problem have been carried for awater
system [32,33] andmetals [34] and a critical review can be found at
[35]. Most of the work in IP parameter sensitivity and parameter
calibration has involved simple potentials like Lennard-Jones with
number of parameters less than 4. More complex IP functions with
more than 4 parameters, such as AIREBO, have not been considered
in previous studies. Apart from the requirement of developing al-
gorithms capable of dealing with high-dimensional parameter
spaces, appropriate noise models reflecting the high uncertainty in
the experimental observations of graphene are also required.

In order to address the high-dimensional parameter space UQ of
AIREBO potential for graphene applications, we developed a
framework that can be used to (i) assess the sensitivity of various
Quantities of Interest (QOI) with respect to the IP parameters, (ii)
obtain probability distributions of the IP parameters which are
robust towards experimental values of QOI, and (iii) propagate the
underlying IP parameter uncertainty to the corresponding predic-
tion of QOI. We assessed the sensitivity of AIREBO by first analyzing
the variation of predicted QOI with respect to its parameters. Using
the generated dataset as prior, we used a gaussian likelihoodmodel
to assess the posterior probability distribution of the IP parameters.
Posterior distributions were approximated through aMarkov Chain
Monte Carlo (MCMC) sampling algorithm. The sampled posterior
probability distributions denote the uncertainty in the IP parame-
ters or potential energy surfaces which is propagated to final QOI by
performing MD simulations or through surrogate models. The un-
certainty in experimental observations was captured through
gaussian noise models. Using this information, we were able to
obtain realistic error bars on MD predictions. The sampled poste-
rior distribution was used to develop a new parameter set for the
AIREBO potential (using the latest DFT simulation data) which
display less sensitive QOI than the original parameters.

2. Methodology

2.1. Molecular dynamics

The core of any MD study is the IP function, the function that
dictates the interatomic interactions. In this work, we studied the
parameter sensitivity of a special IP function for hydrocarbons, the
AIREBO potential. Fittings for the AIREBO potential are performed
on a structure-property database involving DFT/experiment values
for hydrocarbons like graphite and methane. The energy equation
for the AIREBO potential can be written as

E ¼ EREBO þ ELJ þ ETors; (1)

where EREBO is the covalent bonding interactions from REBO po-
tential, ELJ is the Lennard-Jones (LJ) term and ETors is the term
compensating for the torsional interactions. Each of the terms has a
definite functional form, details of which can be found in Ref. [10].
As the material of our choice is graphene, we will be focusing only
on the parameters with CarboneCarbon interactions.

MD simulations were performed using the open source software
LAMMPS [36]. As shown in Fig. 1, a simulation cell with number of
atoms corresponding to each QOI was designed. In the middle of
the simulation cell, one layer of graphite was created with a lattice
constant of 2.46 Ao. With rest of the volume as vacuum, this layer of
graphite atoms resembles graphene. The structure of the graphene
is confirmed by visualizations in Ovito [37] and by comparison of
the radial distribution function to the ones available from previous
studies [38]. Another check to confirm the graphene structure is
carried out by comparing the basic properties computed using
LAMMPS such as the cohesive energy and lattice constant to the
experimental, MD and DFT results of graphene from the literature.
Once the structure is confirmed, simulations for higher-order
properties like elastic constants and defect formation energies
were performed. Further, details on the simulation setup are
documented in supporting information, SI 1. Table 1 presents the
comparison of each QOI to the corresponding experimental values
and first principles calculations from other studies in the literature.
The phonon frequency at t point for LO branch is denoted by while
u2 denotes the phonon frequency at same point for TO branch.

2.2. Parametric constraints

As mentioned in equation (1), AIREBO can be visualized as sum
of REBO potential, LJ potential and Torsional term. UQ analysis in
the original parameter space can be computationally challenging.
To ease the computations, relationships between different param-
eters are introduced using physical assumptions. While fitting the
parameters for Stillinger-Webb based IP for MoS2, similar as-
sumptions were employed [57].

2.2.1. REBO parameters
The REBO potential assumes the following form

V
�
rij
� ¼ Vrepulsion � bijVattraction: (2)

The repulsion part of the potential, Vrepulsion, and attraction part of
the potential, Vattraction, can be written as

Vrepulsion ¼ fcut
�
rij
�
Aexp

��arij
��
1þ �Q�rij�� (3)

and

Vattraction ¼ fcut
�
rij
� X
n¼1;3

BIJnexp
�
� bIJnrij

�
; (4)

where fcutðrijÞ is the smooth cutoff function [58]. The term con-
necting the repulsion and attraction part of the potential energy
function is the term bond order, denoted by bij. In Ref. [58], fittings
for this potential are done in two stages. Values for the pair



Fig. 1. (a) Simulation cell containing Graphene sheet. Atoms are color coded with the corresponding energy values. At ground state, each atom is having �7.46 eV (cohesive) of
energy. Energy perturbations occur in the presence of defects. A single vacancy defect is shown in Fig. 1(b). With a single missing atom three 5 atom rings are formed with atoms
having high energy (colored red). Figure (c) shows another defect resulting in 2 pentagons and 2 heptagons. (A colour version of this figure can be viewed online.)

Table 1
A comparison of the quantities of interests with the corresponding experiment, DFT and MD values. The last column shows the values of these properties calculated by
employing the AIREBO potential. u1 denotes the phonon frequency at t point for LO branch while u2 denotes the phonon frequency at same point for TO branch.

Properties Experiment DFT MD MD (AIREBO)

Cohesive Energy (eV) �7.374 (graphite) [39] 7.4604, 7.906 [40],7.73 [41] �7.401 [42] �7.427
Lattice Constant (Ao) 2.459 [43] 2.408-2.6 [44] 2.46 [42] 2.419
Vacancy Form Energy (eV) 7.0 [45] 7.5 [46,47] 7.558
Bond Rotation Energy(eV) 5 [48] 5 [46,49] 5.294
C11 (N/m) 340 [50] 358.1 [14],342 [51,52] 348 [15], 353 [53] 331.470
C12 (N/m) 60.4 [14], 65 [51] [52], 93 [15], 58.2 [53] 112.085
u1ðTHzÞ 46.92 [54,55] �50.37 [56] �53.96 [56]
u2ðTHzÞ 47.28 [54,55] �50.37 [56] �53.96 [56]
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potential terms and bond order are obtained using least squares fit
to the force constants and energies for a range of hydrocarbons. To
reduce the number of parameters, dependence in the pair potential
terms were identified by constraining the sum of equations (3) and
(4) to the bond energy of diamond at rij equal to its corresponding
bond distance. Using the sum of equations (3) and (4), values of
BCC3 and bCC3 were obtained in terms of the rest of the pair po-
tential parameters. In the second stage, discrete value of fitted bond
order term is used to obtain its corresponding functional parame-
ters by fitting over the database of vacancy formation energies and
bond rotation energies.

In the present work, we introduced variability in the REBO pa-
rameters, using the sum constraint as mentioned in the previous
paragraph. By introducing variability in independent parameters,
we measured the values of dependent parameters, BCC3 and bCC3,
by setting the sum of equations (3) and (4) to the bond energy of
diamond (ECC) at rij equal to the single CeC bond distance, re. Using
the original fitted parameter values, the effect of single CeC bond
order is measured by a constant k. Hence, sum of equations (3) and
(4) is modified in the following way

BCC3expð�bCC3reÞ¼ECC

�
2
4Vrepulsionþ

X
n¼1;2

BCCnexpð�bCCnreÞ
3
5�k;

(5)
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where value of k is determined using original fittings of the pa-
rameters. For each set of the dependent and independent param-
eters, corresponding values of the bond order terms were obtained
using equation (2). Further, values for the bond order correspond-
ing to double, conjugated double and triple bonds are obtained by
setting the derivative of equation (2) to zero at corresponding
equilibrium distances. The obtained bond order terms for single,
double, conjugated double and triple bonds exhibited very low
variation, of the order of 10�3. With such a low bond order vari-
ability, only parameters corresponding to the pair potential part are
considered for uncertainty quantification studies.

2.2.2. LJ parameters and torsional term
Since fittings for LJ parameters and torsional term were done

independently from the REBO parameters in Ref. [10], UQ study in
the present work also considers their relations with each other as
independent. Further, the three parameters for LJ and torsional
term are also fitted independently of each other [10].

Wewill denote the parameters by sCC, εCC , εTCCCC , bCC1, bCC2, bCC3,
BCC1, BCC2, BCC3, A, QCC , aCC , as detailed in Ref. [10].

2.3. Design of the UQ study

The goal is to find the posterior distribution of IP parameters, q,
which involves assessing the dependence of q on the experimental/
DFT observations, Yobs. This dependence is assessed through Bayes
theorem which in the current context can be written as follows

pðqjYobsÞfpðYobsjqÞpðqÞ; (6)

where pðqjYobsÞ is the posterior probability distribution of the IP
parameters q, given the experimental/DFT observations, Yobs. For a
particular realization of the IP parameter q, pðYobsjqÞ denotes the
likelihood of observing Yobs which is approximated by corre-
sponding MD prediction. The prior, pðqÞ, is chosen to be a non-
informative uniform prior for each IP parameter.

To obtain the likelihood, pðYobsjqÞ, we start by defining Yobs as a
realization of the true value of the QOI, Ytrue. The discrepancy be-
tween true and observed value is denoted by measurement noise,
εMN as shown in the following relation

Yobs ¼ Ytrue þ εMN: (7)

Similarly, YMDðqÞ, the MD prediction corresponding to a
parameter set q is related to Ytrue through the following relation

YMDðqÞ ¼ Ytrue þ εMD: (8)

The discrepancy between MD predictions and true values,
denoted by εMD, can be a result of difference in initial atomic ve-
locities, limitations on system size and simulation time, autocor-
relation lengths, etc. By approximating experimental observation
Yobs through MD prediction YMDðqÞ, we assume a single noise term
for both measurement as well as MD noise. It is assumed that the
overall noise, εNoise, is the sum of εMD and εMN and distributed
normally, i.e. εNoise � Nð0;s2NoiseÞ. The standard deviation, sNoise, of
this distribution is treated as another parameter whose posterior
probability needs to be determined. The prior of sNoise is assumed to
be half normal.

Since the noise model is gaussian, the likelihood becomes

p
�
Yobs

			q; s2Noise�fexp

 
�1

s2Noise
½Yobs � YMDðqÞ�

2
!
: (9)
To evaluate the likelihood as above requires full MD simulations,
which can be computationally expensive. To alleviate this compu-
tational burden, we employed efficient surrogate models based on
Gaussian Process methodology which will be used to approximate
the MD predictions.

Gaussian Processes (GP) [59e61] are a special class of surrogate
models which are trained using input-output pairs. In the present
study, pairs of IP parameters and corresponding MD predictions are
used to train GPmodels. TheMD prediction YMDðqÞ can be related to
the mean GP prediction, mGPMðqÞ, through the following relation

YMDðqÞ ¼ mGPMðqÞ þ s2GPMðqÞ; (10)

where s2GPMðqÞ is the variance or the uncertainty about the mean
prediction of GP models.

Using the preceding equations, the relationship between the GP
prediction, mGPMðqÞ, and Yobs can be written as

Yobs ¼ mGPMðqÞ þ s2GPMðqÞ þ εNoise: (11)

A critical part of a GP model is the covariance function which
dictates correlations between GP predictions for two distinct input
points. The choice of covariance function can affect the quality of
the GP prediction. We tested a number of covariance functions and
the best predictor is used for further analysis. Performance of each
GP model is assessed using the leave-one out error which is
calculated by training themodel using the entire training set except
one point. GP prediction on the left-out point is compared to the
correspondingMD prediction at that point and an error is recorded.
This process is repeated for all the remaining training points which
gives a mean absolute error corresponding to that GP model
structure. The goal is to select the GP model which minimizes this
mean error. Further, the MD prediction is compared with the GP
model prediction and R-Squared value is computed from a straight-
line fitting between these two predictions. R-Squared value along
with normalized root mean square error is used to assess the per-
formance of each surrogate model.

The approximation of MD prediction through GP models leads
to the following likelihood function

p
�
Yobs

			q;s2Noise;s2GPM�fexp�
�½Yobs�mGPMðqÞ�S�1½Yobs�mGPMðqÞ�T

�
;

(12)

where S is the diagonal covariance matrix with each element given
by the sum of the variance of the GP prediction, s2GPM , and mea-
surement noise, s2Noise. In the present work, likelihood maximiza-
tion translates into minimization of the maximum variation
between experimental value and MD prediction (approximated
through GP prediction). Given the high-dimensional nature of the
likelihood function, the posterior distribution of the IP parameters,
as per equation (6), is estimated using a Markov Chain Monte Carlo
(MCMC) scheme [62]. The detailed distributions for the IP param-
eters and the corresponding statistics are presented in the results
section.
3. Results and discussion

In order to assess the sensitivity of QOI to IP parameters, we
randomly perturbed the parameters and performed MD simula-
tions on the perturbed parameter set. Instead of using random
sampling, more efficient sampling based on Quasi Monte-



Table 2
Statistics for the QOIs at uncertainty level of 0.5%. Mean of the properties, shown in
first column, stayed closer to MD values except the bond rotation energy. Further,
variance, shown in the last column, is very high for the higher-order properties.

Property Mean Minimum Maximum Range Variance

Cohesive energy �7.48 �9.62 �6.13 3.5 10.76
Lattice constant 2.42 2.24 2.55 0.31 0.005
C11 331.21 241.77 430.66 188.89 1939.01
C12 117.93 95.63 181.69 86.06 237.88
Vacancy energy 7.63 5.26 10.37 5.11 1.18
Bond rotation energy �18.16 �384.41 5.34 389.76 3505.07
u1 936.92 160.54 5459.36 5298.83 622219.3
u2 178.67 1.26 700.46 699.20 26057
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Carlo(QMC) procedures is employed to cover the input space more
effectively. Pseudo random numbers based on the low discrepancy
Sobol sequence [63,64] are generated and used to perturb the IP
parameters, q, through the following relations

qmin ¼ qð1� dÞ; qmax

¼ qð1þ dÞ d2f0:01%;0:1%;0:3%;0:5%;1%g; (13)

qi ¼ qmin þ ðqmax � qminÞSPi i2f1;2;…Ng; (14)

where d is the percentage variation with which original fitted
values are perturbed. For a corresponding value of d, the range is
defined by the difference of maximum and minimum value of
perturbed IP parameters. Considering the i-th Sobol point, SPi, and
the range of perturbation, an i-th perturbed IP parameter vector, qi,
is obtained using equation (14).

For different values of d, corresponding sets of 500 independent
parameter vectors were obtained using the above relations. Each
parameter vector is of dimensionality 10, equal to the number of IP
parameters. For each vector, independent MD simulations are
performed to obtain the respective QOI. MD simulations are per-
formed using LAMMPS [36]. We started with a very small variation
of 0.01% and then slowly increased it to 0.1%, 0.3%, 0.5%, 1%. The
results for these variations are shown in Fig. 2 and the main sta-
tistics are documented in Table 2.
Fig. 2. Boxplots showing the variation of the range of properties for various values of unc
property like cohesive energy. Further increasing uncertainty to 1% led to a number of o
presence of a number of outliers at d equal to 1%. (A colour version of this figure can be vi
It can be observed from the box plots and Table 2, that output
QOIs are extremely sensitive, with observations off by 400% from
the reference MD values (Bond rotation energy). Even the signature
properties for a material structure, cohesive energy, lattice con-
stants and elastic constants, showed high sensitivity to the small
changes in the IP parameters. Higher-order properties like bond
rotation energy showed a number of outliers on a small change of
0.5% with an unphysical mean value of �18.16 eV. Further, variance
in the properties like elastic constants and bond rotation energy is
very high (>103), which shows the fragile nature of the AIREBO
potential.
ertainties. Small variations in the parameters (0.3%) produced huge variation in basic
utliers in defect formation energies. Elastic constants shown (e) and (f) also indicate
ewed online.)



Table 3
Validation metrics for various GP models. The first column shows the type of the
kernel used for the corresponding QOI followed by normalized mean square error
denoted as MSE.

Property Kernel Normalized MSE R-Squared

Cohesive energy RBF 1:69� 10�3 0.99
Lattice constant RBF 3:74� 10�3 0.99
C11 RBF 0.032 0.95
C12 RBF 0.038 0.92
Vacancy energy RBF 0.0047 0.99
Bond rotation energy RBF 0.0063 0.99
u1 RBF*RBF 10�8 0.99
u2 RBF*RBF 10�8 0.99
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3.1. Correlation between inputs and outputs

Examining the scatter plots for each QOI with respect to the
input parameters, it can be seen that most of the parameters have
no significant effect on the final properties of interest except aCC .
Fig. 3 shows the scatter plots of various QOIs with respect to aCC .
While cohesive energy and elastic constants show a nearly linear
relationship, the bond rotation energy showed non-linear behavior.

3.2. Gaussian processes model training

For training the GP models, we considered MD predictions from
the last section, corresponding to d¼ 0.5%. Out of 500 MD simula-
tions, only 200 simulations were used to train the models. Training
of each GP model is carried out using a python package, GPy [65],
where hyperparameters for each model are obtained by maximum
likelihood estimation.

To validate the GP models, we used the leave-one out (LOO)
criteria and corresponding plots are appended in the supporting
information, SI 4. For all the QOI, the plots are linear showing
GP predictions are aligned with MD results. To validate further,
R-squared value of the line fitting the GP prediction and MD
data is presented in Table 3. It is observed that R-squared value
for GP models is more than 0.9. Additional performance metrics
used for the GP model validation is normalized root mean
square error. From Table 3, it is observed that highest normal-
ized mean square error is of the order of 10�2. The above
validation metrics suggest that the GP models have sufficient
predictive accuracy.

Using GP models, predictions of each QOI are made for each
perturbed IP, qi, and corresponding statistics are documented in
Table 4. Comparing the results in Table 4 to the ones in Table 2, its
easily evident that statistics for each QOIs are very close to each
other. Thus, from the validation metrics provided in the last section
along with the comparable statistics to full MD runs, justifies our
use of GP models. GP models were trained using a subset of MD
simulations data, which significantly reduced the computational
burden of UQ studies for MD.
Fig. 3. Scatter of QOIs with respect to aCC . The variation is approximately linear for cohesive e
elastic constants while no trend is visible for the bond rotation energy. (A colour version o
Another check for the GP models was performed by considering
a sample of 10,000 uniformly distributed IP parameters obtained
through random sampling within d (set to 0.5%) of the fitted values.
For this test sample, predictions for each QOI are made using cor-
responding GP models and statistics for each are documented in
supporting information SI 5. Comparing the range of the values in
QOI obtained through QMC and random sampling reveals that
there are certain points in Sobol space which are causing the
highest variation resulting in extremely high values for the final
values of the QOI. Of all the QOI, GP predictions for the bond
rotation energy showed the highest expected value for variance,
which can be reduced by consideringmoreMD runs during training
of its corresponding GP model.

Assessment of the probabilities that GP prediction for a QOI lies
within a certain range of corresponding DFT values were per-
formed. Our results indicate that probability values through GP
models match the ones computed from 500 MD simulations. The
results are appended in supporting information, SI 6.

3.3. Markov Chain Monte Carlo

To approximate the posterior distributions of the IP parameters,
a MCMC algorithm is implemented using the PyMC3 library [66].
nergy and C11 while non-linear for C12. A trend can be seen for the cohesive energy and
f this figure can be viewed online.)



Table 4
Posterior distributions of the corresponding QOIs. The above QOIs are computed on the 500 points from the previous section. For notational brevity, zðqÞ denotes the mGPMðqÞ in
this table. The last column denotes the variance in expected value of GP prediction for a QOI.

Property E½zðqÞ� minðzðqÞÞ maxðzðqÞÞ Range varðzðqÞÞ
Cohesive energy �7.488 �9.614 �5.952 3.66 0.731
Lattice constant 2.418 2.243 2.581 0.34 0.005
C11 337.25 229.33 442.93 213.61 2156.88
C12 118.39 93.66 160.81 67.15 184.43
Vacancy energy 7.63 5.552 10.348 4.80 1.18
Bond rotation energy �18.03 �367.6 9.07 376.67 3468.13
u1 936.92 160.54 5459.36 5298.83 622219.3
u2 178.67 1.26 700.46 699.20 26057
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Using the noise models, likelihood and priors as described in the
earlier section, four separate MCMC chains were run with sample
length of 80,000 each. To assess if the chain has reached statio-
narity, Gwekes indices procedure was applied which confirms that
all the sampled points lies between ±1 of their corresponding
standard deviation. Fig. 4 shows auto-correlation plots for each
parameter, which alongwith traceplots further confirms stability of
the MCMC chain.

Considering the burnout of size 15000, a thinning heuristic of
selecting every 10th point is applied on the remaining 65000
samples. From the thinned MCMC chain samples, the posterior
probability distribution for each parameter is obtained and corre-
sponding plots are shown in Fig. 5, with corresponding statistics as
documented in Table 5. The dashed line in Fig. 5 denotes the
original AIREBO fitted parameter values.

From Fig. 5 and Table 5, it is clear that REBO parameters i.e. BCC1,
BCC2 and QCC are the most critical parameters with huge deviation
of their original fitted values from the correspondingMCMC sample
mean. Parameters like bCC2 and bCC3 also have mean different than
the fitted values. Given that we considered very small uncertainty
of 0.5% in the training set or in our prior, the mean of the param-
eters differs by 0.5%. Higher uncertainty in the training sets might
lead to higher variations in the mean values. With posterior
Fig. 4. Auto-covariance function for each parameter with respect to the lag length. Horizon
posterior distribution. (A colour version of this figure can be viewed online.)
distribution same as prior distribution, LJ parameter (εCC) exhibit
no significant influence on the sensitivity of the QOI. All the
parameter posterior distributions have very low variance denoting
the high confidence in the predicted mean values of these
parameters.

A posterior predictive check is performed using a test sample of
1000 parameter sets, obtained from the sampled posterior distri-
butions. For the test set, corresponding GP models were used to
obtain predictions for each QOI. Fig. 6 shows the boxplots of the GP
predictions for the test sample with corresponding statistics as
shown in Table 6. An estimate of the mean value of s2Noise is also
documented in Table 6. In the sampling scheme, we approximated
theweightage of phonon frequencies to be equal to 0.1 which led to
stable MCMC chains. For fitting purposes, it means giving relatively
higher weightage to cohesive energy and lattice constant than
phonon frequencies. With this sampling choice, parameters
returned with very high GP variance for phonon frequencies. As a
sanity check, we performed MD simulations to compute phonon
frequencies using a subset of posterior distribution. The predicted
values of phonon frequencies exhibited the similar trend as shown
in Fig. 6.

It can be observed from Fig. 6 and Table 6, that the predicted
properties are very close to DFT values except C12. Scatter in the
tal axis in each plot denotes the lag length used in determining autocorrelation of the



Fig. 5. Distribution plots for each parameter after applying thinning algorithms to MCMC trace. For each parameter, its corresponding reference fitted value is shown by the dashed black line. (A colour version of this figure can be
viewed online.)
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Table 5
Statistics for the posterior probability distribution in the IP parameters.The first row
of this table denotes the reference IP parameter values before applying any
perturbation. Second row details the mean values of the posterior distribution and
percentage change of the mean values from reference values are detailed in the
subsequent row. Following two rows details the percentage change inminimum and
maximum values from the reference values.

Metric sCC εCC ε
T
CC

ACC BCC1

Original 3.4 0.0028 0.307885 10953.54 12388.79
Mean 3.38 2.84363� 10�3 0.306517 10952.26 12360.98
Mean % change 0.49 0.00357 0.44 0.012 0.23
Min % change 0.49 0.5 0.5 0.02 0.26
Max % change 0.41 0.5 0.16 0.0032 0.189
Variance 10�7 10�11 10�8 0.084 2.004

Metric BCC2 bCC1 bCC2 QCC aCC

Original 17.567 4.72045 1.433213 0.313460 4.746539
Mean 17.66 4.724 1.4322 0.31191 4.749
Mean % change 0.497 0.076 0.069 0.495 0.0637
Min % change 0.469 0.07 0.134 0.5 0.053
Max % change 0.5 0.081 0.0024 0.45 0.073
Variance 10�7 10�9 10�8 10�10 10�8

Table 6
Statistics for various quantities of interest as compared to the corresponding DFT
values. Above predictions are obtained for a random sample of 1000 parameters
obtained from corresponding posterior distributions. Also shown are the predictions
from posterior predictive distributions (PPC) with expected standard deviation of
the measurement noise. For notation brevity, zðqÞ is used to represent mGPMðqÞ.

Property DFT E½zðqÞ� varðzðqÞÞ E½s2GPMðqÞ� E½s2Noise�

Cohesive energy �7.73 �7.61 10�5 10�5 10�3

Lattice constant 2.46 2.42 10�7 10�6 10�3

C11 342 321.07 10�2 2.48 0.43
C12 65 114.13 10�2 0.45 4.38
Vacancy energy 7.5 7.75 10�3 10�4 10�3

Bond rotation energy 5 5.49 10�4 10�1 0.39
u1 48.04 10�1 105

u1 48.23 10�2 104
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properties are more reasonable and analogous to the distribution
due to the measurement noise. Compared to the sensitivity results
provided in the previous section, elastic constants and bond rota-
tion energy are within 3 standard deviations of their corresponding
mean values. Expected value for the variance in GP predictions for
elastic constants and bond rotation energy is high, which can be
decreased by considering more MD runs for these QOI during GP
training. Of the properties considered here, only C12 has very high
standard deviation for measurement noise. A possible reason for
this is the discrepancy between corresponding MD and DFT values
from literature. Our GP training dataset corresponds to MD value of
112 N/m while MCMC model tries to maximize likelihood with
respect to DFT value of 65 N/m. This discrepancy in GP training and
DFT observation is captured through measurement noise, refer
Table 6.
3.4. Thermal conductivity

Analysis of the thermal properties based on the obtained pos-
terior probability of IP parameters is performed in this section. We
Fig. 6. Boxplots of various QOIs corresponding to a test sample of 1000 parameters from pos
scattered relatively less. (A colour version of this figure can be viewed online.)
computed thermal conductivity of a graphene sheet with di-
mensions of 100� 10 Ao, using non-equilibrium MD method.
Similar methodology is adopted in Ref. [67] for thermal conduc-
tivity predictions. Using the AIREBO potential, thermal conductivity
was computed to be 443W/mK, which is significantly lower than
the experimental and DFT values. Thermal conductivity computed
using optimized Tersoff potential [68] for the same sheet is
482.91W/mK. It has been established in previous studies that
AIREBO is well suited for CeC bond breaking systems and performs
poorly for thermal properties [56,67,69]. In order to improve the
prediction of thermal properties through AIREBO, it is necessary to
address limitations related to its functional form, which is not the
focus of the present study. To have consistent UQ analysis for all the
output properties, we have performed analysis of thermal con-
ductivity relative to the AIREBO value.

To assess the sensitivity of thermal conductivity with respect to
changes in IP parameters, 500 independent MD simulations were
performed at d equal to 0.5% and corresponding results are shown
in Fig. 7 (a). It can be easily seen that values of thermal conductivity
are extremely sensitive to small changes in IP parameters, with
values varying between 349 W/mk and 600 W/mk. Using this data,
efficient GP model, with MSE of the order of 10�5 was trained and
used for UQ analysis.

Fig. 7 (b) shows the GP model's predictions for thermal con-
ductivity at the obtained posterior distribution of the IP
terior distributions. Comparing to sensitivity analysis results in Fig. 2, the properties are



Fig. 7. Boxplots showing the variation of thermal conductivity for a.) MD simulations at d equal to 0.5% and, b.) GP model's prediction on the posterior distribution of IP parameters.
(A colour version of this figure can be viewed online.)
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parameters. As compared to the MD results using Sobol points, the
posterior predictions of thermal conductivity are closer to the
AIREBO/Tersoff value and are exhibiting very low sensitivity to-
wards change in the IP parameters.

4. Conclusions

In this study, we investigated the sensitivity of MD predictions
of graphene properties, using the AIREBO potential, with respect to
the corresponding IP parameters. Our work showed that quantities
of interest (QOI) such as cohesive energy, lattice constants, elastic
constants and defect energies are highly sensitive to small changes
in the Interatomic Potential (IP) parameters. A small change of 0.5%
resulted in an order of magnitude change (up to 66%) in charac-
teristic properties such as cohesive energy, lattice constant and
elastic constants. Assuming a gaussian likelihood model, we ob-
tained a new robust IP parameter set for the AIREBO potential
which addresses the sensitivity issues in its original parameters.
Most of the parameter distributions in this new set are far from
their original fitted values. In contrast, two-body contributions of
the IP modeled through the Lennard Jones potential parameter, εCC
were found to have low impact on sensitivity of QOI and the mean
of corresponding two-body parameters remained closer to their
original fitted value. On the other hand, the REBO parameters were
found to be very sensitive, indicating that future studies should
focus more on these parameters.

Since our analysis considered the latest DFT predictions of gra-
phene from the literature, we believe our new IP parameter set is
better suited to modeling graphene than the original AIREBO po-
tential parameter setting. We found that modeling the uncertainty
in the IP parameters using posterior probability distributions and
propagating to the QOI can increase reliability in MD predictions.
The proposed framework is a computationally efficient tool for
investigating the suitability of IP parameters for modeling condi-
tions which are outside their original fitting dataset, as exhibited
through thermal conductivity predictions. In addition, the pro-
posed framework can also be applied to assess the probability
distribution of the QOI not considered during the original fitting
process.
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