Phosphorene as a Catalyst for Highly Efficient Nonaqueous Li–Air Batteries

Lance Kavalsky,‡ Sankha Mukherjee,‡ and Chandra Veer Singh

†Department of Materials Science and Engineering, University of Toronto, 184 College Street, Suite 140, Toronto, ON M5S 3E4, Canada
‡Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto M5S 3G8, Canada

Supporting Information

ABSTRACT: Li–air batteries can yield exceptionally high predicted energy densities. However, for this technology to become realizable, round-trip efficiency issues and slow kinetics at the cathode require implementation of a catalyst. With design parameters not well understood and limitations on material selection, choosing an ideal catalyst is complex. In Li–air batteries, energy storage is achieved by reactions between Li and O (oxygen reduction reaction for discharge and oxygen evolution reaction for charge). Here, phosphorene is proposed as a solution through simulations of its catalytic behavior toward discharge initiated via either O2 dissociation or Li adsorption. After obtaining intermediate geometries for both nucleation paths leading to either Li2O2 or 2Li2O, free-energy diagrams are generated to predict the promoted discharge product of Li2O2. Furthermore, considering a final product of Li2O2, the overpotentials are predicted to be 1.44 V for discharge and 2.63 V for charge. Activation barriers for the catalytic decomposition of Li2O2 (during charge) are found to be 1.01 eV for phosphorene versus 2.06 eV for graphene. This leads to a major difference in reaction rate up to 1017 times in favor of phosphorene. These results, complemented by electronic analysis, establish phosphorene as a promising catalyst for Li–air batteries.

KEYWORDS: DFT, Li–air battery, 2D phosphorene, catalysis, NEB, overpotential

1. INTRODUCTION

Of the next-generation energy storage systems, Li–air batteries have attracted a lot of attention as they are predicted to have much higher energy densities than alternative battery technologies. However, many issues remain before they can be realized commercially.1,2 About two decades ago, the first nonaqueous Li–oxygen battery system was demonstrated by K. Abraham and Jiang giving hope to its practical potential.3 One of the main drawbacks of Li–air batteries is that they currently suffer from poor round-trip efficiencies, which can be attributed to large overpotentials.4 Overpotential is the difference in voltage between either the charging or discharging voltage and the equilibrium voltage and is a consequence of internal resistances in the cell. In addition, the discharge product can have a significant effect on the reversibility of the system, with Li2O2 being the preferred discharge product.4 Addressing the poor efficiency inherent to these cells has sparked research into solvent catalysts, redox mediators, and suitable catalysts that can contribute catalytically to both the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), which correspond to the charge and discharge reactions, respectively.5 Bruce demonstrated the positive effect of introducing a catalyst to a nonaqueous system on the overpotential through a systematic comparison of a variety of different catalyst materials.6 However, the exact mechanisms of how the catalyst involves itself in the reaction remain poorly understood.1,5 Through increased catalytic activity, the overall research aim is to improve upon the efficiency of these reactions at the cathode, thereby addressing one of the major hindrances of these batteries. Furthermore, a catalyst that can promote the formation of Li2O2 over Li2O is highly desirable in terms of improving upon cyclability.4

Of the materials investigated so far, precious metals such as Pt and Pd have shown some of the best catalytic activities as air cathodes. Among these precious metal catalysts and glassy carbon (GC), the order of ORR activities was demonstrated to be Pd > Pt > Ru ≈ Au > GC.7 However, these materials are highly expensive, which limits their applicability in a commercially feasible system. Carbon materials such as doped graphene8 and siligraphenes9 have also been (theoretically) reported to exhibit excellent catalytic activity but are shown experimentally to have unwanted side reactions with the electrolyte, which decrease the cycle life.10 Thus, a search for carbon-free catalysts is underway with two-dimensional (2D) materials attracting attention11–16 as they have gained traction with other battery types because of their high surface-
to-volume ratios and interesting electronic and mechanical properties.17–20 In this continuing search for catalysts to decrease the overpotential in the cathode, phosphorene has emerged as a potential candidate for this role. Phosphorene is an exciting new material with interesting electronic properties and has already been predicted to show promise in other battery contexts such as Li-S batteries (which was also studied experimentally).21 On the other hand, although phosphorene has been observed to degrade in ambient air conditions, the prerequisites have been demonstrated to be exposure to light, water, and oxygen,22,23 with light being the main factor4,25 (mainly in the UV regime25). Previous density functional theory (DFT) studies have predicted the necessity of the presence of at least both O\textsubscript{2} and H\textsubscript{2}O for this degradation process.27 However, research is being conducted into developing oxygen separation membranes to create a pure oxygen environment1,28,29 and by keeping the battery in dark, pure O\textsubscript{2} conditions, the issue of degradation can be avoided.30 In addition, much work has been conducted to further increase the stability in ambient conditions including adding protective capping layers on the surface31,32 and employing a heat treatment to the system.33 From a practicality standpoint, phosphorene nanosheets can be fabricated from bulk red phosphorus,34 thereby demonstrating its feasibility. Additionally, phosphorene has demonstrated excellent electrocatalytic abilities as a photocatalyst, which opens the door for its exploration in other catalytic applications.35 Recently, phosphorene nanosheets were investigated experimentally for their catalytic ability toward OER and were found to have excellent activity and stability toward this reaction.35 However, to our knowledge, there have not been any theoretical investigations into phosphorene for the context of Li–air batteries, leaving much room for additional insights into the fundamentals of its catalytic behavior.

It is generally agreed upon that there are two possible final discharge products that a Li–air battery cell may yield. The first stems from a two-electron reaction where the final discharge product is Li\textsubscript{2}O\textsubscript{2}, and the second stems from a four-electron reaction that yields 2(Li\textsubscript{2}O).2,28

\begin{align}
2(Li^+ + e^-) + O_2 & \rightarrow Li_2O_2 \quad (1a) \\
4(Li^+ + e^-) + O_2 & \rightarrow 2(Li_2O) \quad (1b)
\end{align}

Regarding (1a), after Li\textsubscript{2}O\textsubscript{2} is formed as an intermediate, it has been proposed that the peroxide may be formed either via a surface mechanism or a solution mechanism depending on the electrolyte, which are outlined below.36–38

\begin{align}
LiO_2^* + Li^+ + e^- & \rightarrow Li_2O_2^* \quad (2a) \\
LiO_2^* + LiO_2^* & \rightarrow Li_2O_2^* + O_2^* \quad (2b) \\
LiO_2_{(ad)} + LiO_2_{(ad)} & \rightarrow Li_2O_2 + O_2_{(sol)} \quad (3)
\end{align}

Focusing on the surface mechanism, Li\textsubscript{2}O\textsubscript{2} can be formed either via electrochemical reduction (eq 2a) or disproportionation (eq 2b),30,31 with the former shown to be kinetically favorable.36 As done elsewhere, we have also assumed the solubility of Li\textsubscript{2}O\textsubscript{2} in the electrolyte to be negligible as it depends on the electrolyte’s donor number,36 which we have used as justification for not considering eq 3. Because of these assumptions, we anticipate that the reaction path toward Li\textsubscript{2}O\textsubscript{2} would proceed through this electrochemical reduction process. As the reaction progresses, the discharge product will continue to grow on the surface and cover the cathode. This layer is not necessarily ordered. For example, in the case of CNTs doped with RuO\textsubscript{2} nanoparticles, the discharge product surface was found to have very poor crystallinity.40 Therefore, in this work, we will consider electrochemical reduction as a surface mechanism to form either Li\textsubscript{2}O\textsubscript{2} or 2(Li\textsubscript{2}O).

Both reactions start with either Li adsorption or O\textsubscript{2} dissociation onto the substrate,3 and, henceforth, 2(Li\textsubscript{2}O) and Li\textsubscript{2}O\textsubscript{2} and 2(Li\textsubscript{2}O) and Li\textsubscript{4}O\textsubscript{2} are used interchangeably. Elsewhere, determination of the nucleation mechanism (Li adsorption or O\textsubscript{2} dissociation) is conducted through thermodynamic considerations alone.9,11,15 However, this does not consider the activation barrier for O\textsubscript{2} dissociation, which will effectively bottleneck this reaction. Moreover, because Li adsorption is spontaneous, we expect Li to act as a nucleation site in addition to O\textsubscript{2}, with both processes occurring simultaneously. To explore both mechanisms, we systematically study the reactions starting with either O\textsubscript{2} dissociation or Li adsorption.

In this work, first-principles density functional theory (DFT) simulations were conducted to obtain estimates of the overpotentials for a nonaqueous Li–air battery using phosphorene. Additionally, DFT was used to provide predictions on the discharge product for this proposed system. As an extension to these studies, we conducted investigations into the differential charge density (DCD), charge analysis, and projected density of states (PDOS) to shed further light on the underlying chemistry of the system. Finally, the climbing-image nudged elastic band (CI-NEB) method was used to evaluate the activation barriers for removal of Li from Li\textsubscript{2}O\textsubscript{2} to give an estimate of catalytic charging behavior. The purpose of this work is to not only evaluate phosphorene’s potential catalytic capabilities as a cathode in Li–air batteries but also contribute to the fundamental understanding of these systems.

2. COMPUTATIONAL METHODS

The Quantum Espresso package41 was used to conduct spin-polarized DFT simulations through the projector augmented wave method.42 The exchange correlation was approximated using the Perdew–Burke–Ernzerhof43 functional within the generalized gradient approximation. The convergence threshold for self-consistency through the DFT computations was 10−6 Ry. For calculations regarding atomic positions and lattice parameters of phosphorene, a kinetic energy cutoff of 60 Ry and charge density cutoff of 480 Ry were employed. Considering pristine phosphorene, a 3 × 3 supercell (36 atoms) with a vacuum of 16 Å was employed with van der Waals forces accounted for through the DFT-D2 approach.44 Various vacuum sizes were tested to best eliminate spurious interlayer interactions (Table S2). For visualization of the structures, XCrySDen45 and VESTA46 were utilized. When studying formation of these molecules on the phosphorene substrate, a 4 × 4 × 1 Monkhorst–Pack47 grid was sampled in the Brillouin zone for calculation of the total energies. The adsorption energy of each of the adatoms on the substrate is calculated by

\[E_{\text{adh}} = E_{\text{P+Li}_2O_3} - E_{\text{P}} - xE_{\text{Li}_2O} - \frac{y}{2}E_{O_2} \quad (4) \]

where \(E_{\text{P+Li}_2O_3} \) is the total energy of the system with the adsorbent attached, \(E_{\text{P}} \) is the energy of pristine phosphorene, \(E_{\text{Li}_2O} \) is the energy per atom of Li in bulk (bcc) form, and \(E_{O_2} \) is the energy of the O\textsubscript{2} molecule in its ground state (triple state). To calculate the change in internal energy when forming Li\textsubscript{2}O\textsubscript{2} from Li\textsubscript{2}O adsorbed on the substrate, the following expression is utilized

\[\Delta E_{\text{adh}} = E_{\text{P+Li}_2O_3} - E_{\text{P+Li}_2O} - (x - y)E_{\text{Li}_2O} - \frac{y}{2}E_{O_2} \quad (5) \]
where E_{li} is the energy per atom of Li in bulk form, E_{P+Li_2O} is the total energy of the new system, and E_{P+Li_2O} is the total energy of the old system. Only consecutive reaction steps are considered, so either $(x - u) = 1$ and $(y - v) = 0$ or $(x - u) = 0$ and $(y - v) = 2$, with x, $y \in 0, 1, 2, 3, 4$. The optimal configurations were taken to be the orientation of the adatom, which provides the lowest total energy of the system after the Brodyen-Fletcher-Goldfarb-Shanee algorithm was employed to variable-cell-relax the system.

As done previously for oxidation, the triplet state of oxygen (the ground state) was modeled using spin-polarized DFT, whereas for the singlet state of oxygen, the spin was restricted to avoid spin contamination. Spin polarization was also implemented to accurately capture any bond breaking that may occur as the reaction proceeds.

To further illuminate the interaction between the reaction intermediates and the phosphorene substrate at the optimum configurations, differential charge density (DCD) plots are generated through the following equation

$$\Delta \rho_{\text{sh}} = \rho_{P+Li_2O} - \rho_{P} - \rho_{Li_2O}$$

where ρ_{P+Li_2O} is the charge density of the adsorbed state, ρ_{P} is the charge density of the bare substrate, and ρ_{Li_2O} is the charge density of the isolated intermediate. These plots provide a visual representation of the charge transfer at important steps of the reaction. Additionally, Bader charge analysis is conducted to quantify the charge transfer present.

To predict the reaction mechanism in phosphorene, the Gibbs free energies at each step of the reaction were computed. For every optimized configuration of the intermediate adatoms, the Gibbs free energies are calculated by

$$G_{\text{sh+Li}_2O} = F_{\text{sh+Li}_2O} + ZPE_{\text{sh+Li}_2O} - T S_{\text{sh+Li}_2O}$$

where $ZPE_{\text{sh+Li}_2O}$ and $TS_{\text{sh+Li}_2O}$ are the zero-point energy and entropic effects (with the temperature set to 300 K) of the adsorbent system relative to each of their constituents, respectively. The pressure and volume contributions were assumed to be negligible under order-of-magnitude arguments used previously.

The configurational component of entropy was also taken to be negligible, leaving only vibrational considerations for entropy and zero-point energy. Moreover, the substrate was held fixed as done previously. The vibrational modes, and thus the vibrational energies, were calculated through the finite displacement method. This method calculates the differences in energy under displacement of each constituent atom of the intermediate molecule to approximate the Hessian matrix. All atoms considered were displaced by 0.01 Å in three orthogonal directions. The magnitude of the displacement was determined via a convergence test by observing the stability of the first vibrational mode of O2 on phosphorene at various displacement lengths (see Figure S1). The Atomic Simulation Environment was used with its built-in interface for Quantum Espresso to run these vibrational simulations. From the vibrational modes, the vibrational Helmholtz free energy is calculated using

$$F_{\text{sh}} = ZPE_{\text{sh+Li}_2O} - T S_{\text{sh+Li}_2O}$$

$$= \sum \varepsilon_i - k_B T \ln \left[1 - \exp \left(\frac{-\varepsilon_i}{k_B T}\right)\right]$$

where h is the reduced Planck’s constant, ε_i is the ith vibrational energy of the intermediate adatom, and k_B is the Boltzmann constant.

Employing the climbing-image nudged elastic band (CI-NEB) method, the activation barrier required to remove Li from Li$_2$O$_2$ was investigated in a manner similar to what has been done for Li-S batteries to obtain an estimate of catalytic behavior toward charging.

3. RESULTS AND DISCUSSION

3.1. Initial Nucleation Step of Discharge Mechanism.

The first step in the reaction will be to either adsorb a Li adatom or dissociate an O2 molecule onto the surface of phosphorene. This will behave as the nucleation site of the discharge product on the catalyst and will influence the structure of the reaction intermediates. If the reaction starts with O2 dissociation, two Li will need to be added to form Li$_2$O$_2$. Otherwise, if the discharge mechanism starts with Li adsorption, then O2 and another Li atom will need to be deposited to again form Li$_2$O$_2$. The addition of another formula unit will disclose whether the two-electron or four-electron reaction (eq 1a,1b) is preferred and introduce asymmetry between the discharge and charge overpotentials. In other words, additional Li and O2 are added to the substrate, with the energies compared to determine whether another Li$_2$O$_2$ forms (Li$_4$O$_4$) or if the reaction will proceed toward 2(Li$_2$O).

Considering the thermodynamics of the process, the adsorption energy of Li onto the substrate was found to be -0.55 eV over the hollow site of the lattice. Elsewhere, this has been identified as the most favorable adsorption site for Li on phosphorene.

For O2 physisorption above the substrate, the binding energy was calculated to be -0.13 eV. However, if O2 can dissociate over the bridge site of phosphorene, the binding energy per O atom was found to be -2.06 eV. Physisorption in this manner was predicted to be the beginning of the main oxidation path.

Interactivity of phosphorene with O2 becomes an important point as it can determine whether physisorbed or chemisorbed states should be considered. The spin state of O2 can play an important role in the dissociation process. O2 in its ground state is a triplet state from Hund’s rule, which states that when there are empty orbitals available the spins will orientate themselves to maximize multiplicity. The triplet state correlates to the spins of the shared electrons becoming parallel, and the singlet state has the spins oriented anti-parallel. It was previously shown that instead of direct dissociation of O2 over pristine phosphorene, which requires overcoming a barrier of 5.6 eV, there exists another possibility. As an alternative, indirect dissociation can occur where an oxygen bridge is first formed, and if the O2 transitions from a triplet to a singlet state, it can dissociate with a barrier of 0.54 eV. However, the probability of this triplet-to-singlet transition was estimated to be only 0.12, which effectively bottlenecks the process.

For comparison, silicon has a transition probability of 0.001 eV. With the combination of requiring a triplet-to-singlet transition and overcoming the 0.54 eV energy barrier, we expect dissociation to occur, but slowly. This leads to O2 dissociation in addition to Li adsorption, providing two mechanisms of discharge growth that we anticipate will occur simultaneously. Therefore, both types of discharge product nucleation mechanisms are considered in this work.

3.1.1. Reaction Intermediate Geometries from O2 Nucleation. To find the best geometrical configuration for each intermediate step of the reaction, the Li atom or O2 molecule was adsorbed to the previous optimized step configuration. For example, after O2 dissociation, a Li atom was adsorbed onto the fully relaxed substrate with the two O atoms already relaxed on the surface. Multiple initial positions of the introduced atom were taken into consideration to ensure that the preferred geometry is identified. The configuration with the most negative
binding energy (i.e., most energetically favorable) was taken to be the optimal configuration for that intermediate.

Starting with the O2 nucleation mechanism, the next step is the addition of a Li atom to form Li2O2. Upon relaxation, the Li atom preferred to lie over the H-site in between the dissociated oxygen molecules. On adding another Li atom to create Li2O2, the new addition preferred to sit opposite to the other Li to form a flat diamondlike structure and the existing Li lowers toward the substrate (Figure 1). The geometry of this intermediate draws comparison with the equivalent molecule during the predicted ORR mechanism on silicene,13 siligraphenes,9 h-BN/Ni(111)14 and g-GeC12 however, a Pt/Cu alloy is not anticipated to demonstrate the same symmetry.59 Following this step, the reaction can either take the path toward Li4O4 (indicating that Li2O2 is the promoted product) or continue to Li4O2 depending on the catalyst. The former refers to a continuation of the previous reactions to form a second unit of Li2O2, and the latter refers to the formation of the alternative discharge product Li4O2. On the track to Li4O2, Li3O2 is expected to be formed first from adding a Li atom to Li2O2. In this case, the additional Li relaxed to a position beside the diamond, forming a tail (Figure 1). Finally, the fourth Li atom preferred to lie on the opposite

Figure 1. Optimized intermediate geometries for the reaction mechanism stemming from O2 dissociation. Color code: green, P; blue, O; and red, Li. Atomic structures were visualized using VESTA.45

Figure 2. (a) Free-energy diagram comparing the two mechanism branches starting from O2 dissociation and leading to either Li4O3 or Li4O4. (b) Free-energy diagram illustrating the mechanism at different electric potentials.
side of the diamond from the tail in Li$_3$O$_2$, creating a symmetric molecular structure. Consider now the alternate path that ends with Li$_4$O$_4$. First, a second O$_2$ molecule was dissociated near Li$_2$O$_2$ to produce Li$_2$O$_4$. As the additional O$_2$ molecule separated, it was observed to pull one of the Li atoms toward it, breaking the symmetry of the Li$_2$O$_2$ molecule. However, by comparing the bond angles of Li$_2$O$_4$ and Li$_2$O$_2$, the dragged Li forms a bond angle of 97$^\circ$ between the newly dissociated O atoms, which is comparable to the bond angle of Li at the top of Li$_2$O$_2$, with 96$^\circ$. This periodicity may be an indicator of an ability to evenly coat the substrate with this discharge product. Building upon this idea of creating a periodic layer on the surface, the addition of another Li atom to obtain Li$_3$O$_4$ reproduced the diamondlike symmetry observed with Li$_2$O$_2$ (Figure 1).

3.1.2. Free-Energy Diagram from O$_2$ Nucleation. Using the formation energies and the vibrational calculations for each optimized intermediate, the Gibbs free energies at each step of the reaction mechanism were computed. Subsequently, two important parameters of phosphorene’s theorized performance can be evaluated: the predicted final discharge product and ORR/OER overpotential. To predict the final discharge product, the difference in Gibbs free energies between the two final steps must be analyzed (see Figure 2a). From the mechanism described in Section 3.1.1, the reaction branches in two directions at Li$_3$O$_2$, leading to a final product of either Li$_4$O$_4$ or Li$_4$O$_2$. We observed that dissociating O$_2$ to form Li$_2$O$_4$ is much more favorable than the addition of another Li, with the former yielding a change of -5.1 versus -0.4 eV for the latter. This is further confirmed by the continuing downhill nature of the path to Li$_3$O$_4$ with a more negative change in Gibbs free energy compared to that for the Li$_4$O$_2$ branch (difference of 7.1 eV between the final products). Keeping this in mind, we henceforth will only use the preferred path for subsequent analysis.

When a potential is applied, U, the change in the Gibbs free energy is augmented by $-nF$ from the influence on the involved electrons at the electrode. We again plot the reaction mechanism with $U = 0$, but now with the final discharge product as the reference point (Figure 2b). From this path, the smallest and largest steps of the reaction may be identified. In this case, the largest step is from Li$_3$O$_2$ to Li$_4$O$_4$ of magnitude 6.62 eV and the smallest step is from LiO$_2$ to Li$_2$O$_2$ with a difference of 1.31 eV. Next, to calculate the equilibrium potential, which is the potential at which the initial step and the final step are equal in Gibbs free energy, the Nernst equation is applied as done previously:

$$U_{eq} = \frac{-\Delta G_f^{Li_4O_4}}{nF}$$

where $\Delta G_f^{Li_4O_4} = G_{Li_4O_4} - 4G_{Li} - 2G_{O_2}$, n is the number of electrons transferred, and e is the elementary charge. Here, the

![Figure 3. Optimized intermediate geometries of the reaction mechanism stemming from Li adsorption. Color code: green, P; blue, O; and red, Li. Atomic structures were visualized using VESTA.](image-url)
The overpotential for charging can be calculated using the following relation:

$$U_{\text{dis}} = \min \left(-\frac{\Delta G_i}{e} \right)$$

(10)

where ΔG_i is the change in Gibbs free energy between consecutive steps. In other words, any potential larger than this will cause this reaction step to become uphill. From the smallest step of LiO$_2$ to Li$_4$O$_2$, a discharge potential of 1.31 V was computed. Taking this further, the overpotential of discharging is defined as $\eta_{\text{ORR}} \equiv U_{\text{eq}} - U_{\text{dis}}$ which will ideally be as low as possible to increase efficiency. Therefore, using phosphorene as a catalyst, the overpotential for ORR is predicted to be 2.48 V (from the O$_2$ nucleation path). We will now shift focus to the charging potential, which is the lowest potential that yields an entirely downhill OER mechanism going from right to left. From the largest step of Li$_2$O$_2$ to Li$_3$O$_4$, a discharge potential of 6.62 V was calculated. Taking this further, the overpotential of charging can be calculated using $\eta_{\text{OER}} \equiv U_{\text{th}} - U_{\text{dis}}$ giving a predicted value of 2.83 V (from the O$_2$ nucleating path).

3.1.4. Free-Energy Diagram for Li Nucleation

In the same manner as for Section 3.1.1, we now consider the process stemming from Li adsorption with the geometries shown in Figure 3. This process is kinetically favored over the alternate path in Section 3.1.1 as it requires no activation energy. Therefore, from this kinetic reasoning, we argue that the mechanism starting from Li adsorption is the dominant reaction.

Starting from Li adsorption, the addition of an O$_2$ dimer leads to the formation of LiO$_2$ in a triangular shape, with both O atoms preferring to lie at the same height above the surface. This is in contrast to the predicted mechanism on δ-MnO$_2$ where the addition of O$_2$ to adsorbed Li was found to orient itself such that the O$_2$ bond was perpendicular to the plane of the catalyst. We also considered the scenario where O$_2$ arrives first, but does not successfully dissociate, and a Li atom arrives. What we observed was that although Li can sit on top of the O$_2$ molecule it is a higher energy state than that with Li at the bottom (-0.93 vs -1.75 eV). Additionally, and more importantly, we found that this configuration of Li on top is unstable because when we nudged the Li atom by 0.5 Å, it swings below the O$_2$ to form the same LiO$_2$ configuration as when Li arrives first. Adsorbing an additional Li onto LiO$_2$ yielded a diamondlike structure comparable to that of the Li$_2$O$_2$ formed starting from O$_2$ dissociation. However, therein lies the difference in that this LiO$_2$ structure had the O$_2$ bond still intact at the center. Interestingly, this structure converged to a non-spin-polarized state, whereas the LiO$_2$ structure maintained the triplet spin orientation of the O$_2$ molecule, albeit weakened from the Li interaction. Building from Li$_4$O$_2$ is the branch point of the reaction, and the route leading to Li$_4$O$_2$ will be studied first. The initial step along this path from Li$_2$O$_2$ is to form Li$_2$O$_4$ because of the addition of O$_2$. This additional O$_2$ molecule preferred to sit below the bottom Li of the diamond and orient itself parallel to the pre-existing O$_2$ in Li$_2$O$_2$. This was the first indication of a larger-scale symmetry that may form with this alternating fashion vertically. Symmetry was then further developed in Li$_4$O$_4$ with the Li preferring to lie beside the pre-existing Li and in between the O$_2$ pairs. As the cluster reached its maximum concentration of Li$_4$O$_4$, the symmetry previously seen was destroyed and one of the O$_2$ bonds broke. The dissociation of these molecules will release a significant amount of energy and affect the predicted overpotentials. Now considering the second branch leading to Li$_4$O$_2$, the first step is the formation of Li$_2$O$_2$ from Li$_2$O$_4$. What is observed is that the third Li atom rotated the Li$_4$O$_2$ diamond such that two of the Li atoms now lay in their preferred adsorption sites (H-site). With the addition of the last Li to make Li$_4$O$_2$, a comparable structure to the corresponding step in the O$_2$ path was formed. However, the central O$_2$ bond remained unbroken in the final cluster of this path.

Figure 4. (a) Free-energy diagram comparing the two mechanism branches starting from Li nucleation and leading to either Li$_4$O$_2$ or Li$_4$O$_4$. (b) Free-energy diagram illustrating the mechanism at different electric potentials.
The equilibrium potential for this mechanism, computed using eq 9, was 2.84 V. This value is significantly closer to the experimental value of 2.96 V for Li$_2$O$_2$ than that in the O$_2$ nucleation mechanism (3.79 V), which bolsters the argument that this Li nucleation path is the more dominant of the two. The experimental value of the equilibrium potential is found by measurement of the formation energy of bulk Li$_2$O$_2$ at standard temperature and pressure along with the Nernst equation and is independent of the substrate employed. Moving onto the discharge potential, the limiting step is expected to be the initial LiO$_2$ formation because this step is smallest when no potential is applied. Applying eq 10 gave a discharge potential of magnitude 1.40 V. From this, we can then estimate the overpotential for discharge, which in this case was 1.44 V. Finally, the charge potential is limited by the final step of forming Li$_4$O$_4$ from Li$_3$O$_4$, and its magnitude was predicted to be 5.47 V. Using this value to estimate the overpotential of the charging reaction gave an estimated value of 2.63 V. It is important to draw attention to how these overpotential values compare to those obtained from the alternate O$_2$ nucleation path. In both cases, the Li nucleation path was preferable with both overpotentials lower than their O$_2$ path counterparts. Because the Li nucleation path will be the dominant reaction because of a lack of activation barrier, we consider these overpotentials as representative of the overall predicted catalytic performance of phosphorene.

3.1.5. Electronic Analysis of Intermediates. Shedding light on the electrical properties of the system as it undergoes the discharge reaction, Bader charge analysis was performed and the PDOS and DCD plots for selected intermediates were generated (Figure 5). With the addition of a single Li atom to the lattice, a semiconductor-to-metal transition was observed as the Fermi Level is pulled into the conduction band. Essentially, Li n-dopes the system as it provides states in the conduction band and increases the number of electronic charge carriers (Figure 5b). Addition of an O$_2$ molecule to form LiO$_2$ maintained the metallic behavior as the Fermi energy remained in the conduction band (Figure 5c). The asymmetry between spin-up and spin-down in this plot stemmed from the O$_2$ bond that did not break upon adsorption, and the O p peaks (which show almost no hybridization) can be attributed to this bond. Using the DCD plot for this configuration to see how the charge of LiO$_2$ was redistributed due to phosphorene (Figure 5f), we see that the lattice pulled charge away from the Li–O bonds, as indicated via the charge depletion at these bonds and...
accumulation between Li and phosphorene. This is verified through Bader analysis, which computed a relative charge of +0.88|e for Li, where the three closest P atoms in the lattice gain on average 0.12|e. Moving onto the next reaction step considered, Li2O2, the system was no longer metallic as evidenced in the PDOS plot (Figure 5d) but instead was semiconducting. However, relative to that of the bare cathode (Figure 5a), the conductivity was improved as the band gap had reduced to approximately 0.4 eV. Drawing attention to the O p PDOS in this plot, more hybridization than in LiO2 with P s and P p is observed. This hybridization is especially evident near the Fermi energy and at around −4 eV. This makes sense as looking at the geometric configuration of Li2O2 in Figure 3, the O atoms have been lowered in between the two Li atoms and lie closer to the phosphorene lattice. Moreover, DCD shows that the charge from Li is mainly pulled toward the substrate (Figure 5g), whereas Bader analysis reveals that the lithium atoms still give up 0.88|e. Because the oxygen atoms are more electronegative than P and one of the O atoms can now directly interact with the substrate, O is expected to pull charge from the substrate. Bader corroborated this prediction by computing that the O atom closest to the surface gained 1.01|e and the adjacent P atom lost 0.64|e. The other O atom was not as close to the substrate and instead opted to interact with the surrounding two Li atoms. Continuing to the next considered product, Li4O4, the oxygen bonds have broken at this stage. This presents itself in the PDOS plot via the observed hybridization between O-p, P-s, and P-p states (Figure 5e). Through Bader analysis, the nature of this bond breaking can be illuminated. With the additional Li atoms that were raised above the O atoms, they can now donate charge to the O atoms without phosphorene confiscating it. Additionally, the O atoms can still pull electrons from the lattice, providing an additional source of charge. Therefore, with these two sources of charge, it was no longer favorable to form the double bond with the other nearest O and the bond breaks. Bader substantiated this claim through computing charges of −1.91|e and −1.88|e for each of the split O atoms, and the closest P atoms gave 1.45|e and 1.64|e, whereas all Li atoms gave an average of 0.89|e. The second O pair did not split because the other lower Li atoms had their charge seized by the substrate, as shown in the DCD (Figure 5h), and blocked the direct interaction of O with the P atoms. In short, the source of the bond breaking is the difference in electronegativity with the cathode and the reconfiguration to allow the oxygen to interact with both the Li and P atoms without mutual interference. Also, PDOS illustrated that relative to that of pristine phosphorene the band gap of the final product was reduced and that, while on the path to this product, intermediates were expected to show metallic behavior.

4. CATALYTIC DECOMPOSITION OF Li2O2

Upon charging the system, the final discharge product of Li4O4 will be decomposed into its constituent atoms. In the case of aqueous electrolytes, redox mediators can be introduced to help this process, but here, we are considering a nonaqueous system, so another method of catalysis must be used. Previously, it has been shown experimentally that during charge of nonaqueous cells the Li−O bonds are broken, leaving Li vacancies, so a possible solution is if the catalyst material can also show activity toward this bond-breaking mechanism. Additionally, previous theoretical work has investigated bulk Li2O2 and has concluded that first Li vacancies form in the discharge product as it decomposes. Ideally, the catalyst employed in the cathode will actively aid in this process, which

Figure 6. Energy profile for the removal of Li from Li2O2 on (a) phosphorene in a diagonal path, (b) graphene, (c) phosphorene along the armchair direction, and (d) phosphorene along the zigzag direction. Color code: green, P; blue, O; and red, Li. Atomic structures were visualized using VESTA.
could be by providing minimal activation barriers for the breaking of Li–O bonds. For the removal of Li from Li₂O₂ on phosphorene, CI-NEB was used to find the minimum-energy pathway and activation barrier. The Li₂O₂ structure from the main Li adsorption path was used, and the first considered migration path will be diagonal along the lattice. We found that 1.22 eV is required to remove a Li atom from Li₂O₂, which is visualized in Figure 6a. Note that only the migration of the separated Li atom is visualized here for clarity (Videos S1, S2, S3, S4 provide full animations of the decomposition processes described in the following sections). Giving the magnitude of this value greater context, we also considered graphene (with Li₂O₂ being formed via Li nucleation and the same procedure as for phosphorene). A 4 × 4 supercell (32 atoms) was used to keep the number of atoms approximately the same as for phosphorene and rule out any possible concentration effects. We found that on graphene the activation barrier for the removal of Li from Li₂O₂ is 2.06 eV, and the path is shown in Figure 6b.

From observation of the migration coordinate versus the energies of the obtained images, further details behind this bond breaking come to light. Starting with phosphorene (Figure 6a), as the dissociation process initiates from image 1 to 3, we see there is an initial barrier for the rotation of the Li₂O₂ molecule. The cause of orientation shift was the symmetry of the molecule requiring special placement on the surface to remove only one Li atom. From image 3 to image 7, we observe the bond breaking of Li–O, leaving separate Li and LiO₂. From image 7 onward, the LiO₂ molecule rotated back to its initial position. Similarly, for graphene, there was an initial translation from 1 to 2, which was negligible in terms of energy difference (<0.05 eV), and from image 2 onward, the bond breaks as both LiO₂ moved toward their final positions.

Next, by splitting diffusion on phosphorene into the armchair and zigzag directions, the barriers along each path were isolated (Figure 6c,d). Starting with the armchair direction (Figure 6c), it began with a rotation of the full Li₂O₂ molecule until the fourth image. At this point, the Li–O bonds began to break as LiO₂ and Li moved to their final positions. Images 8 and 9 correspond to the isolated Li traversing the bridge site of the lattice. The total activation barrier along this path was 1.20 eV, which is very close to that of the diagonal path. Along the zigzag direction, as the Li got pulled toward its isolated final position, LiO₂ was rotated clockwise by one cell. In the final image, the LiO₂ remained in this rotated state, most likely due to the O atoms still seeing the charge from the separated Li, despite its broken bond. Image 8 corresponds again to the diffusion of the detached Li moving across the bridge site of the lattice into its final position. The activation barrier for this path was 1.01 eV, providing the lowest barrier observed. Therefore, phosphorene can catalytically contribute to the breaking of the Li–O bonds better than graphene, especially along the zigzag direction. Through the Arrhenius equation, $k \sim \exp \left(-\frac{E_a}{k_B T} \right)$, with k being the rate constant, E_a being the activation barrier, k_B being the Boltzmann constant, and T being the temperature (300 K), the difference in performance is emphasized as the kinetic rate constant of phosphorene will be approximately 10^7 times greater than that of graphene.

To study whether the supercell size has any influence on these results, we also computed the minimum-energy pathway for different cells of both graphene and phosphorene with the results presented in Table S1. In the case of phosphorene, we considered 3 × 2, 3 × 3, and 3 × 4, and for graphene, we considered 4 × 4, 4 × 5, and 4 × 6. For phosphorene, we observed that the lowest barrier was associated with the 3 × 3 supercell, whereas for the other two concentrations, the barriers observed were higher. This trend was not observed in graphene and could be a result of the different levels of substrate–Li interactions observed in phosphorene versus graphene and how the concentration influences these interactions.

Additionally, we also tested the effect of discharge product cluster size on these results by finding the activation barriers for removal of Li from Li₄O₄. Here, we considered three possible decomposition mechanisms of removing Li atoms from the Li₄O₄ molecule (Figure S2). We have found that the barrier for the process shown in Figure S2c is the lowest observed, and it is for removing the bottommost Li in the structure. A possible explanation for this arises from Bader charge analysis of the Li₄O₄ structure. For the Li atom in question, it has the least positive charge in comparison to that of all other Li atoms (including those in Li₂O₂) with a charge of 0.86e in comparison to approximately 0.89e in all other cases. Therefore, the Li atom has the least interaction with its adjacent atoms and will require the least energy for removal. It can be concluded from this result that the size of the Li₄O₄ cluster can influence the activation barrier for this decomposition process.

5. Comparison to Other Catalysts

Before comparing the obtained overpotential predictions of phosphorene to those of other catalysts previously studied, it is important to note the effect of variation due to selection of computational parameters. As there is not a strict set of guidelines regarding the selection of computational parameters such as pseudopotentials and k-mesh density, the results found in Table 1 should not be taken too literally because the nonuniformity of methodology will result in varying results. This section is intended to provide a qualitative estimate of phosphorene’s performance relative to other catalysts through the identification of trends and patterns.

For a material to be considered an excellent catalyst, it must be able to facilitate very low overpotentials for both charging and discharging while also maintaining high capacity values and
diffusivity capabilities. The significance of overpotentials is that they reflect the round-trip efficiency of the battery employing this catalyst. It should be kept in mind that the magnitudes of the charge potential, discharge potential, and the overpotentials should not be directly compared to experimental values because they are dependent upon the current density. Here, the overpotentials may be taken as a lower curb to experimental findings because the potentials considered are those of the limiting cases. Additionally, discrepancies between experimental and theoretical values could exist because of factors such as electrolytic influence and thermal vibrations. The electrolyte chosen can play a large role in deciding whether the reaction will proceed via the surface mechanism or a solution mechanism, thus affecting not only the path but also the morphology of the discharge product. Moreover, the electrolyte could further have an influence on charge transfer because of its dielectric properties. Considering now thermal vibrations, here, we used the harmonic approximation to estimate ZPE and the entropy. However, any anharmonic effects that may exist in the system are not captured via this approximation, leading to the opportunity for discrepancy. For these reasons, we will compare the theoretical values of a selection of 2D catalyst materials. Staying consistent with experimental findings, Pt and Pd are predicted to have some of the lowest overpotentials. Moreover, these precious metals perform even better when mounted on Cu. Thus, these materials are considered the benchmark to beat. However, these precious metals are predicted to promote the discharge product 2(Li2O), which is not favored in terms of reversibility. Additionally, these precious metals are highly expensive and are therefore not viable options when considering a long-term scaling up of Li–air batteries.

While it becomes apparent that g-GeC gives the best balanced predicted values of those investigated so far, it still has its shortcomings. Namely, it promotes 2(Li2O) again and also contains carbon, which should be avoided because of side reactions. The same carbon argument applies to all of the silicographenes, which immediately adds a caveat to their predicted overpotentials. Moreover, with germanium’s heaviness, the specific capacity of the cell will be restricted. This becomes evident when studying GeS for Li-ion batteries where it is predicted to have a specific capacity of only 256 mAh g⁻¹. Similarly, despite its low discharge overpotential, Ni₄Ni₄(OH)₄’s weight will be detrimental to its capacity and further judgment must be held until its charging properties are studied. When placed in the context of phosphorene’s anticipated specific capacity of 865 mAh g⁻¹ for Li-ion batteries, it becomes evident that phosphorene’s lower weight is highly beneficial. Extrapolating this weight argument, the same can be said for most of the catalyst candidates in Table 1, which implement heavy materials such as selenium, manganese, and germanium. To highlight this point, 2D MnO₂ is predicted to have a capacity of 616 mAh g⁻¹ and GeSe is predicted to have a capacity of 178 mAh g⁻¹. The only materials in Table 1 exempt from this weight criticism that are also carbon-free are silicene and phosphorene. However, silicene is predicted to exhibit a high charging overpotential (4.09 V), much larger than that of phosphorene (2.63 V). Homing in on graphene, it does yield marginally better predicted overpotentials for both discharge and charge than phosphorene, despite its larger energy barrier for Li₂O₂ decomposition. First this may seem contradictory, but because overpotentials rely on a multitude of factors, smaller energy barriers do not guarantee better overpotentials but could certainly help lead to this outcome. However, again, the carbon side reactions cannot be ignored and will play a role in practical investigations.

Another factor that cannot be ignored is the diffusivities of Li on the substrate, which will provide an estimate of the catalyst’s ability to form a uniform discharge product at an efficient rate. Previous studies into the suitability of phosphorene for Li-ion batteries revealed that Li needs to overcome an activation barrier of only 0.08 eV in the zigzag direction. For context, it was found that Li diffusion on the surface of GeS, GeSe, and 2D MnO₂ requires surpassing a barrier of 0.236 eV (elsewhere given as 0.19 eV⁶⁷), 0.26 eV⁶⁷, and 0.148 eV⁶⁷ respectively. As a result, we expect phosphorene to be able to formulate a much more uniform discharge product layer at a faster rate than its previously investigated competitors. Referring back to Section 4, the low activation barriers for decomposition, which are enabled by phosphorene, could increase the efficiency of the decomposition of the discharge products.

6. CONCLUSIONS

First-principles methods were employed to investigate phosphorene’s capability for catalysis in the cathode of Li–air batteries. Reaction paths stemming from either O₂ dissociation or Li adsorption are explored, with the latter argued to be the dominant reaction and both expected to promote Li₂O₂ growth. The overpotentials from this dominant mechanism are computed to be 1.44 V for discharge and 2.63 V for charge. Also, the activation barrier for decomposition of the discharge products is found to be 1.01 eV for phosphorene, considerably lower than that of graphene and yielding a difference of 1.17 in kinetic rate constants. Taking all results into consideration, phosphorene shows excellent potential as a catalyst in Li–air batteries.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsami.8b13505.

Convergence test for vibrational analysis; supercell size influence on Li₂O₂ decomposition barrier; and decomposition barriers for LiO₂ (PDF)

Videos providing full animations of the Li₂O₂ decomposition processes described in the text (AVI) (AVI) (AVI)

AUTHOR INFORMATION

Corresponding Author

*E-mail: chandraveer.singh@utoronto.ca.

ORCID

Lance Kavalsky: 0000-0002-7875-5652
Sankha Mukherjee: 0000-0001-9094-0538
Chandra Veer Singh: 0000-0002-6644-0178

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge funding by the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery grant, the Hart Professorship, and the University of Toronto. Compute Canada is also acknowledged for providing