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A methodology is proposed for the construction of a representative volume element (RVE) for analysis of
laminated composites containing two arrays of ply cracks running in different directions. The only
requirement is that the cracks in any ply are uniformly spaced, and if more than one ply of a given ori-
entation is cracked, then the crack spacing of individual plies must only be in exact multiples of each
other. The spacing of cracks in the two directions can be fully independent. The RVE is constructed
through a systematic consideration of translational symmetries present in the cracked laminate. As a
result, the boundary conditions on the RVE can be imposed without compromising accuracy. Examples
of the application of the RVE methodology are given to illustrate its broad capability and a finite element
(FE) stress analysis is performed for these cases to illustrate results such as the crack surface displace-
ments, local stress fields and RVE-averaged elastic properties. For one case, the average properties are
compared with experimental results, showing good agreement.

Published by Elsevier Ltd.
1. Introduction

Fiber-reinforced composite laminates develop cracks in the
plies when loaded mechanically and/or thermally. These cracks
lie along the fibers in the plies, and are referred to as ply cracks,
matrix cracks, or transverse cracks because of their planes being
normal to the ply mid-plane. In practical structures the laminates
have plies of multiple orientations and therefore under a general
loading they can develop ply cracks of multiple orientations. The
ply cracks of an individual orientation form an array of parallel
cracks, whose spacing is generally irregular initially, but tends to
become uniform, increasingly as the cracks come closer. In the
presence of these cracks, a laminate responds differently than in
its pristine state and although failure is seldom caused by these
cracks directly, they can lead to delamination and eventual lami-
nate failure. For structural integrity and durability assessment it
is necessary to perform deformational and failure analysis of lam-
inates with ply cracks.

The early analytical approaches to laminates with cracks relied
on the shear lag concept and were applied to cross-ply laminates
with cracks in the transverse plies (Garrett and Bailey, 1977).
Although numerous extensions of the shear lag analysis exist for
cracks of multiple orientations, the accuracy of such analyses can-
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not generally be assessed. More accurate analysis is given by the
variational method, which was first published in the English litera-
ture by Hashin (1985) for cross-ply laminates with cracks in trans-
verse plies and later extended to these laminates with two
orthogonal crack arrays (Hashin, 1987). Although the variational
analysis can be made more accurate, as in Varna and Berglund
(1991), it cannot be extended to non-orthogonal cracks. Other anal-
yses, such as the finite strip analysis by Li et al. (1994) and stress
transfer by McCartney (1992) are also limited to cases involving
aligned cracks. More recently, stiffness prediction for off-axis lam-
inates with ply cracks in two symmetrically placed off-axis plies
has been attempted (Singh and Talreja, 2008) using the so-called
‘synergistic damage mechanics’. This approach requires knowledge
of crack opening displacement which should be obtained numeri-
cally. The current work will be useful in that context.

It cannot be denied that a numerical analysis, such as the finite
element (FE) analysis, is inevitable for general cases of laminates
with non-uniformly distributed ply cracks in multiple, non-orthog-
onal orientations. At the same time, an FE analysis can become in-
valid and impractical if care is not exercised to reflect the model
geometry, e.g. by making use of symmetry appropriately. An
important step in the process of conducting FE analysis for cracked
laminates is to set up an appropriate representative volume ele-
ment (RVE). An important requirement for such RVE is that it has
representation of all material properties (e.g. elastic moduli) and
geometry (orientation, sequence and thickness of plies), as well
as a minimum representative number of cracks that contribute to
the subject of interest. In a simple case of a cross-ply laminate with
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uniformly distributed transverse ply cracks, loaded by uniform ax-
ial traction, the RVE is simply a unit cell of rectangular shape,
extending from one crack to the next in the axial direction and hav-
ing laminate thickness as its lateral dimension. Due to two orthog-
onal planes in the unit cell only a quarter-cell region suffices for FE
analysis. At the other end, RVE for a general laminate with cracks in
multiple orientations will inevitably be a three-dimensional vol-
ume containing a multitude of cracks. Without some degree of jus-
tifiable simplification an FE analysis of the most general RVE can
become impractical and difficult to interpret.

The present effort is devoted to proving simple rules for con-
structing an RVE for the case of a laminate that contains ply cracks
in two orientations, not necessarily orthogonal. The crack spacing
in the arrays of the two orientations can be independent of each
other. The only requirement is that in each of these orientations,
cracks must be spaced either at a constant distance or at distances
that are exact multiples of one another. The cracks of a given ori-
entation can also be spread over plies of that orientation. The pro-
posed construction invokes invariance with respect to translation
of a basic unit consisting of a rectangular region defined by the
two orientations. The approach adopted here stems from the
development of unit cells establish for micromechanical analysis
of unidirectionally fiber-reinforced or particle-reinforce compos-
ites (Li, 1999, 2001; Li and Wongsto, 2004). The RVE construction
is developed for different cases to illustrate the breadth of its appli-
cability. FE analysis is performed for each case and its results are
discussed and for one case the results are compared with experi-
mental data on elastic moduli. Several related studies can also be
found in the literature. For instance, Noh and Whitcomb (2001)
used periodic boundary conditions in evaluation of effective prop-
erties of cracked laminates but the layup of the laminates and the
placement of cracks in the laminates are rather restrictive. Xia et al.
(2003) developed RVE for evaluation of effective properties in an-
gle ply (i.e. ±h) laminates. Other work relevant to analysis of peri-
odic microstructures in composites include studies by Xia et al.
(2006), Grufman and Ellyin (2007) and Jin et al. (2008).
2. Macroscopic strains and corresponding displacement field

When a laminate is subjected to a macroscopically uniform
strain field, e0

x ; e0
y and c0

xy, under in-plane loading, the relative dis-
placements between two points P and P0 can be expressed as (Li
and Wongsto, 2004)

u0 � u ¼ ðx0 � xÞe0
x þ ðy0 � yÞc0

xy

v 0 � v ¼ ðy0 � yÞe0
y

w0 �w ¼ 0

ð1Þ

where u, v and w are the displacements at point P while u0, v0 and
w0 are those at P0. It can be pointed out that the expression of the
above displacement field is not unique and a different expression
would, however, only differ from the above by a rigid body
rotation.

The above relative displacements will be essential for establish-
ing the boundary conditions for the RVE to be used for the FE anal-
ysis of such cracked laminates as will be presented below.
3. Geometric considerations

Assume a laminate of arbitrary layup in which there are two ar-
rays of ply cracks running at angles h1 and h2, measured with re-
spect to the reference axis x of the laminate coordinate axes
(x,y,z), as sketched in Fig. 1(a). Since the cracks are aligned with
the fiber direction in the ply, these angles also represent the fiber
directions in the cracked plies. Let there be as many such cracked
plies as practically possible in the laminate (for illustration in
Fig. 1(a), only one cracked ply in each of the two orientations is
shown) and let them be placed in an arbitrary sequence. However,
in every cracked ply of either array, the crack spacing must be the
same, or if different, then it must be in exact multiples of one an-
other. The crack spacing in the two directions could, however, be
independent of each other. It is also assumed that the in-plane
dimensions of the laminate are sufficiently larger than those of
the RVE and hence the RVE is free from the effects due to the free
edges of the laminate.

In the mid-plane of the laminate, a tessellation is introduced
using a grid system of which each family of gridlines is parallel
to an array of cracks, as sketched in Fig. 1(b). The gridlines in each
family are spaced at the crack spacing of the corresponding array.
When the plane of the laminate is partitioned with the grid system,
all the patches created are identical. Any of these can be chosen as
the master cell and the rest can be reproduced by translational
transformation as an image of this cell. The mapping from the ori-
gin to its image can be characterized by two independent transfor-
mations in the (n,g) coordinate system, aligned with the crack
directions (Fig. 1(b)): translations by m spaces along the n-axis
and n spaces along the g-axis. Taking an arbitrary point P in the
master cell as the origin, the corresponding point P0 in the image
cell is then given by the transformation represented by m and n.
In the case of Fig. 1, m = 2 and n = 1.

In accordance with the mapping, P(x,y,z) ? P0(x0,y0,z0), the coor-
dinates of points P and P0 are related as follows:

x0 ¼ xþml1 cos h1 þ nl2 cos h2

y0 ¼ yþml1 sin h1 þ nl2 sin h2

z0 ¼ z

ð2Þ

where

l1 ¼ b2= sinðh2 � h1Þ and l2 ¼ b1= sinðh2 � h1Þ; ð3Þ

with b1 and b2 being the crack spacing in the two arrays and l1 and l2
the side lengths of the repeated cell as indicated in Fig. 1(b).
4. RVE and its boundary conditions

The geometric symmetries in the sense of translations allow the
use of the master cell as an ideal ‘‘basic cell”. However, in order to
develop an RVE from this cell, a set of appropriate boundary condi-
tions have to be placed to account for all the necessary geometry,
displacement and traction continuity conditions between this cell
and all other cells surrounding it. The translational transformations
in the mapping process already account for the continuity of geom-
etry, as described in the previous section. The displacement conti-
nuity based on the same translational transformations is described
next.

Consider the master cell as shown shaded in Fig. 1 with sides A,
B, C and D. The cell to its right is its image given by the transforma-
tion m = 1, n = 0. The right side A of the master cell is also the left
side of this image cell, which by the transformation is the image of
the left side B of the master cell. Thus the continuity conditions be-
tween the two cells will be fulfilled by the relationship between
side A and side B of the master cell as imposed by the translational
symmetry transformation.

Using m = 1 and n = 0 into the coordinates transformation (2),
gives

x0 � x ¼ l1 cos h1

y0 � y ¼ l1 sin h1

z0 � z ¼ 0
ð4Þ
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Fig. 1. (a) A 3D view of a cracked laminate. (b) A planner view of a cracked laminate with cells tessellated by the grid system.
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Substituting the above into (1), the relative displacements between
corresponding nodes on the two opposite sides A and B of the mas-
ter cell are obtained as

� ujB þ ujA � l1ðe0
x cos h1 þ c0

xy sin h1Þ ¼ 0

� v jB þ v jA � l1e0
y sin h1 ¼ 0

�wjB þwjA ¼ 0

ð5Þ

It is noted that these conditions represent continuity on the com-
mon surface between the master cell and the cell on its right, and
therefore apply only to the continuous part of the side. If a crack lies
along this side, these conditions would not apply on the part that
has the crack surfaces because of the displacement discontinuity.
Thus, in implementing these conditions digitally in a FE model,
the nodes on the interfaces should be considered as part of the un-
cracked surface while they are excluded from the crack surface. If
equation constraints as given in Eq. (5) are used to eliminate some
degrees of freedom when implemented practically through an FE
code, e.g. ABAQUS�, it is crucial for the user to be clear which ones
are to be eliminated. For the sake of presentation in this paper, and
also as a systematic guideline for potential users, the first term in
each of Eq. (5) is eliminated. This is consistent with ABAQUS� appli-
cations and also the reason why these equations are presented in
this particular manner. These considerations apply to all develop-
ment hereafter.

Between sides C and D, relative displacements between corre-
sponding nodes for the uncracked part of the interface are obtained
in a similar manner. The transformation is represented by m = 0
and n = 1 in this case and hence,

x0 � x ¼ l2 cos h2

y0 � y ¼ l2 sin h2

z0 � z ¼ 0
ð6Þ

and

� ujD þ ujC � l2ðe0
x cos h2 þ c0

xy sin h2Þ ¼ 0

� v jD þ vjC � e0
y l2 sin h2 ¼ 0

�wjD þwjC ¼ 0

ð7Þ

Eqs. (5) and (7) together define the displacement boundary condi-
tions for the RVE. When these conditions are imposed on the faces
B and D, the degrees of freedom there are eliminated. Depending on
the FE code used for the analysis, complications can sometimes
arise. Firstly, these conditions have to be imposed in the forms of
equations between unknown degrees of freedom of the RVE. Sec-
ondly, their imposition also introduces extra degrees of freedom,
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e0
x ; e0

y and c0
yz, into the analysis and the code selected should have a

mechanism to allow this. Both of the above can be accomplished
with facilities such as ‘equation constraints’ or ‘multiple point con-
straints (MPC)’, which are available in many commercial FE codes,
for instance, ABAQUS�. A third complication requires a bit further
treatment as follows.

For the continuous part of the edges (viewed as corners in 2D),
i.e. the intersections between the sides of the RVE, some of the con-
ditions obtained for the nodes along it are duplicating. Among the
four corners, 1, 2, 3 and 4, as shown in Fig. 1, both corners 2 and 4
are tied to corner 1 as well as to corner 3. In other words, a rela-
tionship between corners 3 and 1 can be established through cor-
ner 4, and another such relationship can be established through
corner 2. These two relationships thus are duplicate of each other.
This makes some of the equations from (5) and (7) redundant
when they are imposed at corners. While redundant equations
do not make any difference mathematically, they can cause errors
in some of the FE codes, such as ABAQUS�, as each of such equation
constraints will be used to eliminate one degree of freedom. When
a redundant equation constraint arises, the code looks for a degree
of freedom that has been eliminated already. This will be perceived
as an error. It is therefore the user’s responsibility to eliminate such
redundant equations before these equation constraints are im-
posed. The way those corners are related provides the way of elim-
inating these redundant equations.

To implement this consideration, when faces for the sides are
defined, the nodes long the edges (intersection of sides) at the cor-
ners are excluded. These edges at the corners are treated separately
as follows. For the continuous part of an edge at a corner, say cor-
ner 1, including the node where cracks in the neighboring plies in
different directions meet, the nodes on it are related to those at
corners 2 and 4 according to (5) and (7), i.e.

�u2 þ u1 � l1 e0
x cos h1 þ c0

xy sin h1

� �
¼ 0

�v2 þ v1 � e0
y l1 sin h1 ¼ 0

�w2 þw1 ¼ 0

for corner 2 ð8Þ

and

�u4 þ u1 � l2ðe0
x cos h2 þ c0

xy sin h2Þ ¼ 0

�v4 þ v1 � e0
y l2 sin h2 ¼ 0

�w4 þw1 ¼ 0

for corner 4 ð9Þ

The relationships between corner 3 and corner 1 established
through corner 2 duplicates those established through corner 4
and hence one set, given below, suffices.

�u3þu1�ðl1 cosh1þ l2 cosh2Þe0
x �ðl1 sinh1þ l2 sinh2Þc0

xy¼0

�v3þv1�ðl1 sinh1þ l2 sinh2Þe0
y ¼0 for corner 3

�w3þw1¼0

ð10Þ

Eqs. (8)–(10) apply to the uncracked parts of the edges. In this way,
all the independent equation constraints have been incorporated
while redundant equation constraints have been left out. As they
are imposed, the degrees of freedom on the edges at corners 2, 3
and 4 are eliminated. Since they represent continuity conditions,
they are, of course, only imposed on the continuous parts of the
edges at the corners, as stated above.

For the part of the edges within a crack surface, say for
that running in the h1 direction, the discontinuity is present
along a direction across the h1 direction, while continuity re-
mains along the h1 direction. Thus, the following applies to
this part of the edge, if the crack surface containing it is along
the h1 direction
�u2 þ u1 � l1ðe0
x cos h1 þ c0

xy sin h1Þ ¼ 0

�v2 þ v1 � e0
yl1 sin h1 ¼ 0

�w2 þw1 ¼ 0

between corners 2 and 1

ð11Þ

and

�u3 þ u4 � l1ðe0
x cos h1 þ c0

xy sin h1Þ ¼ 0

�v3 þ v4 � e0
yl1 sin h1 ¼ 0

�w3 þw4 ¼ 0

between corners 3 and 4

ð12Þ

For the part of the edges at the corners within the crack surface run-
ning in the h2 direction, continuity remains intact along that direc-
tion. Thus, the following applies for this case:

�u4 þ u1 � l2ðe0
x cos h2 þ c0

xy sin h2Þ ¼ 0

�v4 þ v1 � e0
yl2 sin h2 ¼ 0

�w4 þw1 ¼ 0

between corners 4 and 1

ð13Þ

and

�u3 þ u2 � l2ðe0
x cos h2 þ c0

xy sin h2Þ ¼ 0

�v3 þ v2 � e0
yl2 sin h2 ¼ 0

�w3 þw2 ¼ 0

between corners 3 and 2

ð14Þ

This completes all the displacement boundary conditions intro-
duced by the translational symmetry considerations. For their easy
application, a sketch is presented in Fig. 2(a) to illustrate where
each of the particular equation constraints should be imposed.
Eqs (8), (11) and (14) have not been shown in Fig. 2, as they follow
from Eqs. (10), (12) and (13), respectively. Eqs. (11)–(14) are re-
quired only if there are exposed crack surfaces on the sides of the
RVE.

In terms of imposition of boundary conditions in a practical
analysis, it might be advantageous to avoid exposing crack surfaces
on the sides of the RVE. This can be easily achieved by offsetting
the grid system in the n and g directions by an arbitrary amount,
as shown in Fig. 2(b). This will not upset the translational symme-
tries in any way. By doing this, the boundary conditions will be
easier to impose. However, the RVE will contain internal cracks,
which makes the meshing more demanding, as a set of indepen-
dent nodes will have to assigned to each side of the opposite sur-
faces of a crack. Between the options as sketched in Fig. 2(a) and
(b), it will be entirely the users’ choice, i.e. either easier meshing
or easier boundary conditions.

The displacement boundary conditions on the RVE obtained
above are necessary to facilitate an FE analysis without using any
incorrect representation of the RVE. One should bear in mind that
this RVE as constrained so far still allows rigid body translations in
three directions. They need to be constrained as follows before an
FE analysis can go ahead.

u ¼ 0
v ¼ 0 at any but only one free node

ði:e: not subject to other constraintsÞ
w ¼ 0

The free node can be from corner 1 but not from other corners as
the nodes there have already been constrained through Eqs. (8)–
(14). The third constraint in Eq. (15) above should not be imposed
if symmetry about the z-plane is assumed, e.g. when only half of
the laminate thickness is analyzed for a laminate of symmetric
layup.
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Fig. 2. (a) Illustration of the boundary conditions on the RVE with surface cracks. (b) Illustration of the boundary conditions on the RVE without surface cracks.
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The rigid body rotations, however, have been constrained al-
ready by the symmetry transformations and no extra care has to
be exercised in this respect by the user.
σx σx

θ1 θ 2

Fig. 3. Laminates to be analyzed in the Examples 6.1 and 6.3.
5. Traction boundary conditions

The continuity should also impose some relationships between
the tractions on opposite sides of the RVE over the continuous part
of the surfaces. They can be given as follows.

Given the periodic appearance of the RVE, the boundary oX can
be split into two parts, oX+ and oX�, with outward normals on
them denoted as nþi and n�i , respectively, where oX+ and oX� can
be related through translational transformations (in a piecewise
manner, as appropriate). Between the corresponding points on
oX+ and oX� the translations symmetry conditions require

rþij nþj þ r�ij n�j ¼ 0 ð16Þ

where rþij and r�ij are the stresses on oX+ and oX�, respectively.
These are the natural boundary conditions for the boundary value
problem. Satisfaction of these conditions is achieved as a part of
variational process as the total potential energy functional is
minimized.

However, if the FE code is displacement based, as most existing
commercial FE codes are, traction boundary conditions are natural
boundary conditions, in the terminology of the variational princi-
ples. They should not be imposed since the variation (minimization
in the case of linear elastic problem) of the total potential energy
will imply them, as discussed in Li (2008). As far as a user is con-
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cerned, the traction boundary conditions (16) can be ignored in or-
der to apply the RVE presented here.
6. Examples of applications

To illustration the application of the RVE established above, two
examples have been chosen. Given the fact that existing results are
scarce in the literature, direct comparisons with available results
are not to be pursued. However, the results obtained will be dis-
Fig. 4. (a) Stress contour plot at a deformed state of the RVE with applied stress rx = 1 MP
half of the RVE with applied stress rx = 1 MPa. The stresses are shown in Pa (N/m2).
cussed in order to justify them as far as possible. The plies in all
the cases considered here are assumed to be standard graphite-
epoxy with a ply thickness of 0.25 mm and with the following elas-
tic properties:

E1 ¼ 44:7 GPa; E2 ¼ 12:7 GPa; G12 ¼ 5:8 GPa and m12 ¼ 0:297

where E1 and E2 are the Young’s moduli in the fiber and transverse
directions, respectively, G12 is the in-plane shear modulus and m12 is
the axial Poisson’s ratio.
a. The stresses are shown in Pa (N/m2). (b) Stress contour plot at a deformed state for
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For use in 3D analysis, all plies are considered to be transversely
isotropic, and hence the thickness direction (index 3) related prop-
erties are taken as

E3 ¼ E2 ¼ 12:7 GPa; G13 ¼ G12 ¼ 5:8 GPa; m13 ¼ m12 ¼ 0:297;

m23 ¼ 0:42 and G23 ¼ E3=2ð1þ m23Þ ¼ 4:885 GPa

FE analysis is performed using ABAQUS� version 6.6. 3D continuum
elements (C3D8) are used in FE model. The laminates to be analyzed
below are all loaded uniaxially in the x-direction, except in Example
6.3 where uniaxial tension in y-direction and pure shear in the x–y-
plane are also applied separately in order evaluate Ey and Gxy,
respectively. The actual layups vary from one case to another and
hence the angles h1 and h2.

6.1. [0/±45/0]s Laminate with equally spaced cracks in both ±45� plies
under axial tension

In relation to Fig. 3, the laminate under consideration corre-
sponds to a case with h1 = 45� and h2 = �45�. The crack spacing in
both cracked plies is both assumed to be 1 mm. Following Li and
Wongsto (2004), a concentrated ‘force’ (with a dimension of force
times length) of r0

x � volume of the RVE ¼ 10�3 MPa�m3 is ap-
plied to the extra degree of freedom e0

x . Effectively, this will result
in a macroscopically uniaxial stress r0

x ¼ 1 MPa. The magnitude of
the load applied affects the magnitudes of the macroscopic strains
obtained. However, the effective properties of the laminated ob-
tained will be fully independent of it.

The extra or key degrees of freedom associated with macro-
scopic strains as introduced in Li (1999, 2001) and Li and
Wongsto (2004) represent a unique feature unavailable in unit
cells or RVE as found from other sources in the literature. They
offer huge conveniences in applying loads, evaluating average
stresses and strains in the unit cell or RVE and calculating the
effective properties of the material represented by the unit cell.
In the actual FE analyses, they can be introduced by defining
several additional nodes which node numbers not occupied by
other physical nodes in the mesh. They can be located anywhere
and, without losing generality, they can be put at the origin of
the coordinate system for the mesh. The degrees of freedom at
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these nodes are not associated with any particular directions
as conventional degrees of freedom. However, they can be trea-
ted in the FE analysis in the same way as conventional degrees
of freedom in the sense that a concentrated force can be applied
to any of them as the ‘load’ as required or, if a value is imposed
to any of them as prescribed ‘nodal displacement’ as a boundary
condition, a reaction can be expected at this degree of freedom.
Any of them can, of course, be left free, i.e. no imposed ‘nodal
displacement’ as a boundary condition or ‘concentrated force’
as a load, in which case, a ‘nodal displacement’ will be expected
at the degree of freedom as a result of deformation. The only dif-
ference is that the ‘nodal displacement’ obtained at any of these
extra or key degrees of freedom gives a macroscopic strain di-
rectly instead of physical displacement or rotation in any partic-
ular direction as of a conventional degree of freedom.

Out of the ABAQUS� analysis, the macroscopic strains obtained
at those extra degrees of freedom as the ‘nodal displacements’ are
found as

e0
x ¼33:499�10�6; e0

y ¼�14:380�10�6 and c0
xy¼1:1843�10�9

Apparently, the shear component is nothing but numerical round-
ing error as it is several orders of magnitude lower than the other
strains. From these macroscopic strain values and applied macro-
scopic stress, the effective properties of the cracked laminate can
be obtained as

Ex ¼ 29:852 GPa; mxy ¼ 0:4293

as opposed to those in the virgin laminate

E0
x ¼ 31:097 GPa; m0

xy ¼ 0:4149

They represent a 4% and 3.5% change in the effective Young’s mod-
ulus and Poisson’s ratio of the laminate, respectively, due to the
presence of transverse cracks in the ±45� plies of the laminate.
The increase in the Poisson’s ratio results from reduced in-plane
shear stiffness (hence, increased shear strain) along the fibers (in
45� to the x-axis) in each ply due to the presence of cracks. This
can be demonstrated using a laminate theory if one reduces the
in-plane shear modulus along fibers artificially.
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2 For interpretation of the references to color in Fig. 6, the reader is referred to the
web version of this paper.
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The deformed state of the RVE (with a deformation magnifi-
cation factor of 3000) is presented in Fig. 4(a) with the mesh
shown which is regular all over. The contours are for Mises
stress, which may not be particularly meaningful for composites
in general. However, as an indication of the stress distribution,
they are perhaps informative enough for the present purpose
of discussion. Highest stress concentrations are found on the
interfaces between the 0� plies and the ±45� plies where the
crack edges are located. The next region of stress concentration
is between the ±45� plies where mutual constraining effects
are the strongest and, therefore, there is less straining than at
other interfaces. Away from crack edges, uniform stress distribu-
tion resumes, as expected, e.g. between the 0� ply at the bottom
and the +45� ply above it. Readers are reminded that stress lev-
els as indicated in the legend is in response to 1 � 106 (Pa) of
average stress in uniaxial tension as applied load. The deforma-
tion of the crack surfaces is a combination of opening and
in-plane shearing modes, which will be described quantitatively
later. For more insight into the RVE, a half of the RVE is shown
in Fig. 4(b), where the depth of crack affected zones can be seen
clearly. In the middle of the RVE, stress distribution is perfectly
uniform across the ±45� interface. This is expected to change as
the crack density increases.

The opening (normal the crack) and sliding (tangential to the
crack) displacements of the cracked surfaces are important param-
eters in the damage analysis of cracked laminates. A larger opening
of cracks suggests more severe degradation in the stiffness proper-
ties of the laminate. The synergistic damage mechanics (SDM) ap-
proach suggested by Singh and Talreja (2008, submitted to for
publication) utilizes this fact to characterize damage effects in
multidirectional laminates. The average crack opening displace-
ment, in a general sense, may depend upon laminate material, its
layup and the ply thicknesses. The present computational ap-
proach provides an appropriate way of obtaining the crack surface
displacements.
For the present laminate system, the distributions of relative
normalized displacements between opposite crack surfaces normal
and tangential to the crack surface, Dun and Dut, respectively,
along the edges at corners of the RVE are plotted in Fig. 5. The dis-
placements are normalized with respect to ply thickness and open-
ing and macroscopic strain, i.e.

Dun ¼
uþn � u�n

tce0
x

; Dut ¼
uþt � u�t

tce0
x

ð17Þ

where the superscripts + and � denote two opposite crack surfaces,
tc is the cracked ply thickness, and e0

x is the macroscopic strain in
axial direction. In the figure, the absolute values are shown for
the ease of comparisons as their signs may change from one face
to another. Although both displacements share a similar profile,
the magnitudes are rather different. Given the ±45� ply angles of
the cracked plies, it is expected that significant sliding due to in-
plane shear would arise. It is in fact more than twice the opening
displacement normal to the crack surface. Across the width of the
RVE, there is little variation in these distributions. The locations of
most difference are at the corners of the RVE. Even there, the com-
parison with the average does not suggest anything significant.

Along the mid-planes of the cracked plies, the relative normal-
ized displacements between opposite crack surfaces have been
plotted along the side of the RVE in Fig. 6. The displacements nor-
mal to the crack surfaces, termed as the crack opening displace-
ments (COD), and denoted by jDunj, are plotted against
normalized crack longitude in Fig. 6(a). The different lines show
the averaged values normalized with respect to half width of the
cracked +45� and �45� plies. The corresponding plots for displace-
ments tangential to the crack surfaces, termed as the crack sliding
displacements (CSD), and denoted by jDutj, are shown in Fig. 6(b).
In the figures, dotted blue2 lines represent +45� ply, whereas solid



Table 1
Comparison between FE results and experimental data (Varna et al., 1999) for cracked [0/±h4/01/2]s laminate.

h (�) Macroscopic strains at extra degrees of freedom Effective properties

Undamaged laminate Damaged laminate

e0
x e0

y c0
xy E0

x v0
xy Ex=E0

x mxy=m0
xy

FEM Experiment FEM Experiment

55 67.223 l �23.275 l 0.124 l 18.99 GPa 0.3435 0.78 0.71 1.01 1.04
70 85.737 l �12.111 l 0.356 l 17.88 GPa 0.18 0.65 0.63 0.79 0.69

Fig. 7. (a) Stress contour plot at a deformed state of the RVE for cracked [0�/±554/0�1/2]s laminate with applied stress rx = 1 MPa. The stresses are shown in MPa. (b) Stress
contour plot at a deformed state of the RVE for cracked [0�/±704/0�1/2]s laminate with applied stress rx = 1 MPa. The stresses are shown in MPa.
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green lines represent �45� ply. The difference in jDutj between the
+45� and �45� plies is observed to be insignificant at all points
along the crack longitude, while the difference in jDunj is small,
but almost constant throughout the crack longitude. This implies
that there is almost the same constraint on both of the +45� and
�45� plies from the supporting 0� plies. The variations across the
width of the RVE are almost negligible, noticing the small scales
adopted in this figure. However, the trend of variations agrees well
with what is expected. The constraint to the cracks from a neigh-
bouring ply with fibers at 90� to the crack surface is hardly weak-
ened by the presence of cracks in the constraining ply. This
explains the reason for lack of variation in the distributions in
Fig. 6. Should the cracks in the constraining ply make any differ-
ence, it is to weaken the constraint at the location of the cracks
(i.e. both ends in Fig. 6) and hence increased crack surface displace-
ments are found there. The relative displacement in the thickness
direction Duz is an order of magnitude smaller than the rest, as
shown in Fig. 6(c). Although it is insignificant in magnitude, the
pattern of variation conforms with common sense as it suggests
a local twisting effect due to the fact that +45� and �45� plies
are not in the same plane. However, this twisting effect has been
largely suppressed globally as a laminate because of the symmetric
layup. The overall average crack surface displacements, in opening
and in-plane shearing modes, respectively, are found (scaled to
correspond to a 0.5% macroscopic strain level) as

hDuni ¼ 0:53 lm and hDuti ¼ 1:22 lm

as taken from the one of the cracked plies while the same from the
other are expected to be literally identical.

6.2. [0/±h4/01/2]s Laminate with equal crack spacing in both ±h4 plies
under axial tension

To enable comparison with the experimental data, the crack
spacing in the cracked plies is assumed equal to 1.25 mm. The
stress analysis is performed for h = 55� and 70�. Similar to the pre-
vious analysis, a concentrated force corresponding to a macro-
scopic, axial stress of 1.0 MPa in the x-direction is applied on the
RVE through the extra degree of freedom e0

x . The magnitude of
the concentrated ‘force’ is equal to r0

x� volume of the RVE.

For h = 55� laminate: the magnitude of the concentrated
force = 1.7435703 � 10�3 MPa �m3.
For h = 70� laminate: the magnitude of the concentrated
force = 1.1926723 � 10�3 MPa �m3.

The macroscopic strains as obtained from the FE analysis as the
nodal displacements at the extra degrees of freedom are shown in
Table 1. Also included in the table are the effective properties of the
cracked laminates derived from the applied macroscopic stress and
the obtained macroscopic strains.

In the experimental work, Varna et al. (1999) evaluated the
effect of cracking in [0/±h4/01/2]s laminates subjected to tensile
loading in axial direction. The laminate specimens were observed
to have nearly same crack density in +h and �h layers at a given
loading. The full-size specimens (20 mm width) were loaded in
an Instron 1272 testing machine to measure residual elastic
properties at different states of damage and to characterize dam-
age (density of cracks in the ±h-plies) in the laminates at
increasing tensile loads. Thin strips (3.5 mm width) were then
cut longitudinally from the cracked specimens and were placed
in a set-up developed for measuring COD. The set-up consisted
of a miniature materials tester (MINIMAT) for loading the thin
strip to open cracks, which were observed by an optical micro-
scope equipped with a video camera. The micro-specimens (thin
strips) were loaded at two pre-selected longitudinal strains, for
the COD measurements. A specially constructed mini-extensom-
eter was used to measure strains on the micro-specimens. These
strains were much below the strains in the macro-specimens at
which the intralaminar cracks were produced, thus generating
no further cracking.

The FE predictions are compared with the experimental data in
Table 1 at a crack spacing equal to 1.25 mm. In general, the FE re-
sults compare well with the experimental data. However, for
h = 55�, it is important to note that the experimental data showed
shear induced damage which has not been considered in the FE
analysis performed above. For h = 70�, FE results show less reduc-
tion in the Poisson’s ratio than that observed in experiments but
the experimental data showed a large scatter in the Poisson’s ratio
(Varna et al., 1999).

The contours for the Mises stress are shown in Figs. 7(a) and (b)
on the deformed configuration of the RVE with a deformation mag-
nification factor of 1000 for h = 55� and 70�, respectively. Top views
of the two meshes of the RVEs for these laminates are shown as in-
sets in these figures. They are both skewed, as expected. It should
be noted that the mesh is not fine enough to give reasonable stress
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and displacement contours near the crack tips for practical consid-
erations. The presented results are for illustration primarily.

In the particular case of [0�/±704/0�1/2]s laminate, experimental
data were available (Varna et al., 1999) for the stiffness reduction
as crack density increases. FE predictions have been made corre-
spondingly and compare with experimental data in Fig. 8. The
agreement is good, bearing in mind that the FE mesh is fairly
coarse which tends to provide a stiffer response.

6.3. [0/�60/45/�60/45/0]s Laminate with unequal crack spacing in
�60� and 45� plies under combined tension and shear

This is a case to illustrate the wide range the proposed RVE con-
struction is capable of covering. The crack spacing in the upper
Fig. 10. Stress contour plot at a deformed state of the RVE for cracked [0/�60/45/�60/
shown in MPa.
�60� ply is different and 3 times that in the other �60� ply. The
locations of the cracks in these two plies are staggered with an off-
set as shown in Fig. 9. The crack spacings in the two 45� plies are
unequal as well, and one is twice the other. The locations of the
cracks in these two plies are also staggered as shown in Fig. 9.
The RVE is depicted in Fig. 10. The macroscopic stress ratio is as-
sumed to be at r0

x : r0
y : s0

xy ¼ 2 : 1 : 1 (with r0
x ¼ 1:0 MPa).

With the current laminate configuration loaded in axial ten-
sion, there will be cracks in all but the 0� plies within the
RVE. It makes sense to avoid cracks on the surfaces so that
boundary conditions can be applied slightly easier, as suggested
in Fig. 2(b).

The macroscopic strains obtained at the extra degrees of free-
dom are

e0
x ¼ 31:162�10�6; e0

y ¼ 13:952�10�6 and c0
xy ¼ 48:788�10�6

Here, the shear strain is quite high due to the loading condition and
laminate layup. There is no data available to validate the analysis.
Rather, the case could serve as a benchmark case for future studies
to demonstrate the capability of the RVE proposed.

The contours for the Mises stress in the RVE under combined
shear and tensile loading condition (rx = 1 MPa; ry = sxy = 0.5 MPa)
with a deformation magnification factor of 3000 are shown in
Fig. 10. The mesh adopted is not fine enough to capture all the de-
tails in stress distribution, which was not the purpose of the pres-
ent exercise. However, at the present level of resolution, it is
possible to observe that the cracks in the �60� plies are subjected
to more crack opening displacement than those in the 45� plies.
This is due to the applied loading case and the laminate layup. A
simple laminate analysis of the same laminate without cracks sug-
gests higher laminar stress in the direction transverse to the fibers
(hence to the cracks) in the �60� plies than that in the 45� plies.
Thus, more crack opening displacement is expected in the �60�
45/0]s laminate with applied stress rx = 1 MPa, ry = sxy = 0.5 MPa. The stresses are



Table 2
Macroscopic strains and effective properties for cracked [0/�60/45/�60/45/0]s laminate.

Loading case Macroscopic strains at extra degrees of freedom Effective properties

e0
x e0

y c0
xy

Virgin material – – – E0
x ¼ 25:31 GPa; E0

y ¼ 20:38 GPa; G0
xy ¼ 9:87 GPa; v0

xy ¼ 0:3510; v0
yx ¼ 0:2827

rx = 1 MPa; ry = sxy = 0 42.340 l �15.081 l �7.275 l Ex = 23.62 GPa; vxy = 0.3562
ry = 1 MPa; rx = sxy = 0 �15.081 l 51.694 l 6.371 l Ey = 19.35 GPa; vyx = 0.2917
sxy = 1 MPa; rx = sy = 0 �7.27 l 6.371 l 105.750 l Gxy = 9.46 GPa
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plies. As a result, more stress concentrations as indicated by the
stress contours are seen at the crack edges in these plies than in
the 45� plies.

It can also be observed from the deformation pattern shown in
Fig. 10 that the sides of the RVE do not remain plane after deforma-
tion. They would, if the reflectional symmetry conditions had been
used instead of translational ones. However, the laminate layup
and the damage pattern do not possess such reflectional symme-
tries. In other words, any attempt to impose boundary conditions
such that the sides remain plane after deformation would lead to
incorrect results, as there is no reason in the present case to justify
such boundary conditions.

The same RVE can be analyzed for other loading cases under
macroscopically uniaxial direct stress or shear stress in order to
evaluate the effective properties of the cracked laminate. The
macroscopic strains and the corresponding effective properties
derived from the results of these loading cases are presented in
Table 2.

From the effective properties shown in Table 2, the lack of ortho-
tropy is obvious, as given by the presence of the macroscopic shear
strains under macroscopic direct stresses. However, the symmetry
of the effective stiffness matrix (as a condition for the existence of
strain energy density) of the cracked laminate is preserved, as vali-
dated by the reciprocal relation, myx ¼ mxy

Ey

Ex
¼ 0:3562 19:35

23:62 ¼ 0:2917.
7. Conclusions

By considering the translational symmetries present in cracked
laminates with two independent arrays of cracks in different direc-
tions, not necessarily orthogonal, an RVE can be constructed with
boundary conditions derived from the symmetry conditions with-
out compromising their precision. The approach is systematic and
straightforward to apply. The use of the proposed RVE has been
demonstrated through three different examples illustrating the
wide range of its applicability. While the validity of the present for-
mulation relies on its mathematical rigor, the favorable compari-
sons against experimental data give confidence in the use of the
RVE in analysis of cracked laminates. The results obtained here
for unequal cracking in two different directions, with staggered
placement of cracks in the plies, may not be possible without the
use of the proposed RVE construction. It can be claimed that the
work presented in this paper has extended the existing capability
for analyzing laminates with two cracking systems subjected to
the geometric restriction of the proposed RVE.
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