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a b s t r a c t

This paper treats the problem of elastic response of composite laminates containing matrix
cracks in plies of multiple orientations. The approach taken has been described as synergis-
tic damage mechanics (SDM) and has been previously illustrated for ½0m=� hn=0m=2�s lam-
inates with cracks of equal density in þh and �h plies [Singh, C.V., Talreja, R., 2008. Int. J.
Solids Struct. 45(16), 4574–4589]. The current work extends the approach to
½0m=� hn=90r �s and ½0m=90r=� hn�s laminates with cracks additionally in the 90�-plies.
The interaction between the �h-cracks and the 90�-cracks is analyzed in terms of the crack
surface displacements using a three-dimensional finite element (FE) model and found to be
significant only for crack orientations close to 90�. The stiffness degradation of the laminate
with all cracking modes simultaneously present is formulated by continuum damage
mechanics using a second order tensor characterization of damage. The elastic moduli
changes predicted by the SDM procedure are validated by independent three-dimensional
FE calculations. For a particular case of quasi-isotropic ½0=90=� 45�s laminate, the elastic
moduli predictions are evaluated against experimental data. Finally, a parametric study
is performed to examine the effects of ply thickness changes on stiffness properties.

Published by Elsevier Ltd.
1. Introduction

Efficient use of composite laminates in a wide range of
applications requires placing plies in multiple orientations.
A common example is a class of laminates called quasi-iso-
tropic that usually have ply orientations of 0�, 45� and 90�,
exemplified by the ½0=� 45=90�s configuration. In spite of
such laminates already in use, there is no rigorous and
comprehensive analysis available to assess their response
in the presence of cracking in more than one set of plies.
The need for such analysis in the context of durability
and life prediction has been emphasized in a recent report
by National Research Council (2005). Lacking such analy-
sis, the current design procedures are conservative, often
relying on criteria that allow no cracking at all. To remedy
this situation we require an approach that is capable of
incorporating effects of ply level (microscopic) failure
er Ltd.

x: +1 979 845 6051.
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events into a laminate level (mesoscopic) constitutive
framework suited for structural analysis under general
loading. One approach of this nature is Synergistic Damage
Mechanics (SDM) that retains the Continuum Damage
Mechanics (CDM) framework at the mesoscopic level of a
representative volume element (RVE) while incorporating
microscopic cracking through tensor-valued internal dam-
age variables. Previous works have applied this approach
to ply cracks in two symmetrically placed orientations in
½0m=� hn=0m=2�s laminates (Varna et al., 1999; Singh and
Talreja, 2008); the present work treats the more general
case of ½0m=� hn=90r �s and ½0m=90r=� hn�s configurations
where cracks are additionally present in the 90�-plies.

The literature in damage mechanics of composite mate-
rials is extensive. Rather than cite all approaches, we shall
outline those developments that are of direct relevance to
treating ply cracking in off-axis orientations. The complex-
ity of cracking in general off-axis orientations has been doc-
umented in several experimental studies, e.g., Masters and
Reifsnider (1982); O’Brien and Hooper (1993); Tong et al.
(1997a); Varna et al. (1999). Analytical methods for
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estimating elastic properties of laminates with distributed
off-axis cracks are mostly accurate for transverse cracks
in cross ply laminates. More general laminates with cracks
require a three-dimensional stress analysis, and efforts to
address these situations have typically resorted to either
computational methods, e.g. the finite element method
(Tong et al., 1997b), or to different approximate methods,
e.g., the equivalent constraint method (Zhang et al., 1992)
and its combination with modified shear lag theory (Kash-
talyan and Soutis, 2000b) or the first-order shear deforma-
tion laminate plate theory (Zhang and Herrmann, 1999).
More recently, a modified two-dimensional shear lag ap-
proach has also been attempted (Yokozeki and Aoki,
2005) for analysis of obliquely crossed cracks. The damage
patterns in multidirectional laminates have complexities of
geometry as well as interactions between damage modes,
examples of which can be found in Kashtalyan and Soutis
(2000a,c). Consequently, all approaches by necessity intro-
duce simplifications and develop approximate analyses.
Assessment of the approximations becomes difficult when
the simplifications reduce the dimensionality of the prob-
lem such as going from a three-dimensional geometry of
cracks to their two-dimensional projection.

Another approach to formulating constitutive relation-
ships for laminates with cracks was proposed by Gud-
mundson and Ostlund (1992), and Gudmundson and
Zang (1993), in which the crack surface displacements en-
ter explicitly. These displacements were, however, evalu-
ated for a transversely isotropic medium of infinite
extent. For thin laminates this approximation introduces
approximations that cannot be evaluated in all cases.
Lundmark and Varna (2005) improved this situation by
reformulating the constitutive relationships for the in-
plane loading case in the framework of laminate plate the-
ory. This allowed explicit incorporation of cracking in plies,
displaying different effects of cracked outer versus inner
plies in a laminate. The crack surface displacements were
calculated by using a finite element model and these quan-
tities were expressed by power law relationships in the
laminate parameters. Comparisons of the thermal expan-
sion coefficient, longitudinal Young’s modulus and major
Poisson’s ratio for laminates with cracks only in 90�-plies
showed good agreement with experimental data. In a con-
tinued effort, Lundmark and Varna (2006) included crack
sliding displacement of 90� cracks and showed that for
one set of cracks the calculated shear modulus of laminates
compared favorably with directly evaluated finite element
values.

The CDM framework, although quite general and well
suited for structural analysis, needs, in its conventional
form determination of material coefficients for each lami-
nate configuration. The SDM methodology was proposed
(Talreja, 1996) to alleviate this problem by determining
these coefficients for a reference configuration (typically a
cross ply laminate) and deriving the coefficients for other
cases via a ‘‘constraint” parameter that is given by relative
crack surface displacements evaluated numerically by a
finite element model of an appropriate representative
volume. The micro-level evaluation of the constraint
parameter, which carries the effect of the plies neighboring
the cracking plies on the crack surface displacements, pro-
vides a convenient way of incorporating the essential effect
of cracks on changing the laminate response.

The previous work (Singh and Talreja, 2008) on
½0m=� hn=0m=2�s laminates with cracks in þh and �h plies
showed successful prediction of stiffness coefficients by
the SDM methodology. The crack density and the constraint
to crack surface displacements in the two orientations were
the same in that laminate configuration. Thus, taken to-
gether the two sets of cracks acted effectively as one mode
of damage. In the current work, the ½0m=� hn=90r �s and
½0m=90r=� hn�s configurations analyzed contain cracks
additionally in the 90�-plies, providing a truly multimode
damage scenario and rendering the generalization of the
previous work nontrivial. In the following sections, we shall
first present the formulation of stiffness–damage relation-
ships for multimode damage and specialize it to the case
of �h-ply damage and 90�-ply damage as the two damage
modes in the selected configurations. The constraint
parameters appearing in these relationships will be defined
in terms of the crack opening displacements (CODs) in a gi-
ven damage mode. A 3-D finite element (FE) based proce-
dure for calculating the CODs in a representative unit cell
will be described next. The SDM methodology will be de-
scribed and its predictions of axial modulus and the Pois-
son’s ratio for increasing crack densities will be compared
with the moduli computed independently by the FE model.
The experimental data for the case of a quasi-isotropic
½0=90=� 45�s laminate will be compared with the SDM pre-
dictions. Finally, the effect of ply thickness in cracked ver-
sus uncracked plies will be illustrated by a limited
parametric study.

2. Stiffness relations for ½0m=%hn=90r�s and
½0m=90r=%hn�s laminates

2.1. Matrix cracking in multiple off-axis plies

Consider a laminate with a mix of on-axis and off-axis
plies loaded axially, i.e. along the direction of fibers in the
on-axis plies. Such a laminate is illustrated in Fig. 1. Let
the off-axis ply orientations be denoted by h1; h2, etc. The
in-plane stress state in each of these plies with respect to
the material axes is displayed in the figure. This stress state
can attain a critical value for matrix cracking in one of the
off-axis plies at an applied load, and with further increase
of the load, multiple matrix cracking can ensue by the so-
called shear-lag process. Similarly, the crack initiation and
multiplication process in other off-axis plies can occur at
different applied load values. Defining the set of intralami-
nar multiple cracks of a given orientation (h1; h2, etc.) as a
damage mode, a load-induced multi-mode damage sce-
nario can develop. To be sure, such a scenario is also possi-
ble under thermal loading (e.g. cooldown from curing
temperature) or under a combined thermal and mechanical
loading.

Since laminates are often designed to have plies aligned
with the anticipated major load direction in order to sustain
that load, while the off-axis plies are placed to provide the
needed shear and transverse stiffness, the choice of
½0m=� hn=90r�s and ½0m=90r=� hn�s laminates for damage
analysis presented here is intended to address many prac-



Fig. 1. A general half-laminate with off-axis plies: (a) geometry and loading, (b) normal crack spacing sh
n , and axial crack spacing sh in a cracked ply, and (c)

directions of normal vectors for cracks in þh and �h plies.

Fig. 2. Cracking process in ½0=90=h1=h2�s half-laminate.
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tical situations. Fig. 2 illustrates the development of multi-
ple damage modes in these laminate configurations under
an axial tensile load. As indicated there, cracking initiates
first in the 90�-plies at an overall strain �90

0 , and on increas-
ing the load, this cracking multiplies. At the strain �h1

0 the
h1-plies begin cracking and with further increase in the im-
posed load, an interactive cracking process continues in
both ply orientations. Eventually, all off-axis plies can con-
duct the multiple cracking process. In the special case
where two ply orientations have the same, or nearly the
same, conditions (constraints) for cracking, two cracking
modes can occur simultaneously. In earlier works (Varna
et al., 1999; Singh and Talreja, 2008) it was found that in
½0m=� hn=0m=2�s laminates the crack densities in the þh
and �h orientations could be assumed to be the same and
their combined effect could be represented by a single
equivalent damage mode. For the ½0m=� hn=90r �s and
½0m=90r=� hn�s laminates, we shall show later that the
cracking of the �h-plies here also with good approximation
can be represented by one damage mode. Thus the total
damage description in these laminates would require add-
ing the 90�-ply cracking as a separate damage mode.

2.2. Damage characterization and elastic response for two
damage modes

Assuming that there are N damage entities of a given
damage mode a in the RVE, the normal part of damage ten-
sor is taken as (Talreja, 1990, 1994)

DðaÞij ¼
1
V

X
k

Z
S

aninjdS
� �

ka

ð1Þ

a

where ni ¼ ðsin h; cos h;0Þ are components of the unit vector
normal to a matrix crack plane in the off-axis ply of orienta-
tion h with respect to laminate longitudinal axis, V is volume
of RVE and ka ¼ 1;2; . . . ;N. The surface area of a crack, S, and
the influence vector magnitude, a, are specified as

S ¼ tc �W
j sin hj ð2Þ

a ¼ j:tc ð3Þ

where j, called the constraint parameter, is an unspecified
constant of (assumed) proportionality between a and the
crack size tc (also cracked-ply thickness), and W is the lam-
inate width (Fig. 1). Assuming a to be constant over the
crack surface, one gets from Eq. (1)

DðaÞij ¼
jt2

c

sht sin h
ninj ð4Þ

where sh is the axial crack spacing in the cracked ply. The
elastic stiffness tensor of the damaged laminate for in-
plane response can be expressed as (see the derivation in
the Appendix: Eq. (A-7))

Cpq ¼ C0
pq þ

X
a

CðaÞpq ð5Þ

where p; q ¼ 1;2;6;C0
pq is the stiffness coefficient matrix of

the virgin laminate and
P

aCðaÞpq represents the total stiff-
ness change due to all modes of matrix cracking averaged
over the RVE.

Following the usual CDM procedure (see Appendix for
details of derivation of Eqs. (A-37) and (A-38)), the stiffness
matrix of the damaged ½0m=� hn=90r �s laminate can be de-
rived as
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where

D ¼ 4t2
0

t
1
sh

n

jh

jhjh¼90
fð2nþ rÞ2j904nþ2r�r2j90

g þ r2 j90

s90

� �
ð7Þ

where t0 is the thickness of a single ply, sh
n and s90 are the

normal crack spacings in �h and 90�-plies, respectively,
and the constraint parameters are defined as

jh ¼
ðDuyÞ�h2n

2nt0
; j904nþ2r ¼

ðDuyÞ904nþ2r

ð4nþ 2rÞt0
; j90 ¼

ðDuyÞ902r

2rt0

ð8Þ

where subscript denotes a particular damage mode (orien-
tation of cracked plies) and sub-subscript represents the
number of cracked plies corresponding to that damage
mode. Duy is the crack opening displacement (COD) aver-
aged over thickness of the cracked ply, and is defined as

Duy ¼
1
tc

Z tc=2

�tc=2
DuyðzÞdz ð9Þ

where Duy represents the separation of crack planes in the
direction normal to the crack face with the local coordinate
system ðx; y; zÞ placed on the crack as shown in Fig. 3. Since
the 90� cracks are centrally placed along the laminate
thickness, the crack size for 90� damage mode is 2rt0.
The average COD in þh and �h layers are added to yield
an equivalent constraint parameter with a crack size of
2nt0. The central mode occurs once in the damaged lami-
nate, while the non-central mode occurs twice (on either
side of the laminate mid-plane).
Fig. 3. Representative unit cell for FE an
The stiffness–damage relationships for ½0m=90r=� hn�s
laminates can be obtained by following the same steps as
described above. It must be noted that unlike ½0m=�
hn=90r �s laminates,�h damage mode in this case is centrally
placed, thereby the corresponding equivalent crack size is
4nt0 (with averaging over two þh and two �h layers). On
the other hand, the crack size for the 90� damage mode is
rt0. The derived stiffness–damage relationships retain the
form of Eq. (6). However D in this case is given by

D ¼ 2t2
0

t
1
sh

n

jh

jhjh¼90
f2ð2nþ rÞ2j904nþ2r � r2j90g þ r2 j90

s90

� �
ð10Þ

with the corresponding constraint parameters given as

jh ¼
ðDuyÞ�h4n

4nt0
; j904nþ2r ¼

ðDuyÞ904nþ2r

ð4nþ 2rÞt0
; j90 ¼

ðDuyÞ90r

rt0

ð11Þ

From stiffness–damage relationships (Eq. (6)), the engi-
neering moduli for the damaged laminate can now be de-
rived using the following relationships

E1 ¼
C11C22 � C2

12

C22
; E2 ¼

C11C22 � C2
12

C11
;

m12 ¼
C12

C22
; G12 ¼ C66 ð12Þ

Thus,

E1 ¼
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1
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alysis of ½0m=� hn=90r �s laminate.
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m12 ¼
m0

12E0
2

1�m0
12m
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þ Da04

E0
2

1�m0
12m

0
21
þ 2Da02

ð15Þ

G12 ¼ G0
12 þ 2Da03 ð16Þ

In the above expressions, the constants a0i; i ¼ 1;2;3;4 are
material constants representing the effect of cracking on
laminate stiffness properties. The usual way to obtain them
is through experimental data for a selected reference lami-
nate, e.g. a cross ply laminate ðh ¼ 90�Þ, at a certain crack
density. However, an alternative and more general way is
by numerical simulation, which will be discussed later.

The flow chart in Fig. 4 describes the procedure for mul-
tiscale synergistic methodology for multimode damage
assessment. Computational micromechanics involves anal-
ysis of a representative unit cell to determine the COD val-
ues and the constraint parameters. In a separate step, the
material constants a0i appearing in Eqs. (13)–(16) are deter-
mined from experiments or numerical simulations carried
for a reference laminate, specifically, ½0=903�s. These rela-
tions are then employed to predict stiffness degradation
with constraint parameters and material constants ob-
tained from experiments (or FE simulations) as inputs. In
the final step, the overall structural behavior in response
to external loading can be analyzed based on the degraded
stiffness properties for the damaged laminate.

3. FE modeling

As described in Section 2, SDM uses micromechanics
modeling to evaluate the constraint effects of undamaged
plies over cracked plies. Three-dimensional FE analysis is
Fig. 4. Multi-scale synergistic methodology for analyzing damage behavior in a
and 90� layers.
performed here as a micromechanical tool to calculate
the constraint parameters. A representative unit cell of
the RVE for ½0m=� hn=90r �s laminate configuration with im-
posed symmetry boundary conditions is shown in Fig. 3. In
FE analyses, the cell size is taken sufficiently large so as to
avoid significant interaction between adjacent cracks in an
individual ply. Each ply in the laminate is 0.125 mm thick.
The ply material is glass-epoxy (HyE 9082Af, Fiberite) with
in-plane properties E11 ¼ 44:7 GPa; E22 ¼ 12:7 GPa;G12 ¼
5:8 GPa and m12 ¼ 0:297. To obtain the remaining proper-
ties for use in the 3-D model, the unidirectional ply is as-
sumed transversely isotropic in the cross-sectional plane.
Thus, E33 ¼ E22 ¼ 12:7 GPa; G13 ¼ G12¼5:8 GPa;m13¼ m12¼
0:297;G23 ¼ E22

2ð1þm23Þ
¼4:885 GPa. The Poisson’s ratio m23 in

the isotropic cross-sectional plane is taken as 0.3.
Separate 3-D FE models were constructed for ply orien-

tations, h ¼ 25;40;55;70;80 and 90�, accounting for the
mid-plane symmetry. The matrix cracks were taken to
have grown across the entire width of the specimen.
ANSYS SOLID45 (eight-noded isoparametric) elements
were used. Each FE model contained 10,000–50,000 ele-
ments to ensure sufficient accuracy of FE computations. A
smooth flow of mesh through the thickness was obtained
using mapped meshing. Aspect ratio of elements near the
crack surfaces was kept close to 1.0 for better accuracy.
Linear Elastic FE analyses were carried out on unit cells
using ANSYS 10.0 at 0.5 % axial strain. Displacement
boundary conditions were applied by constraining the left
end of the unit cell and providing required displacement at
the right end, such that,

ðu1ÞX1¼0 ¼ 0; ðu1ÞX1¼2l ¼ u0; ðu3ÞX3¼0 ¼ 0 ðsymmetryÞ
ð17Þ
general symmetric laminate ½0m=� hn=90r �s with matrix cracks in þh;�h,
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where u0 is the applied displacement and 2l is the length of
unit cell (Fig. 3).

Due to presence of cracked surfaces in three directions
(þh;�h and 90�), it is not possible to construct a fully peri-
odic unit cell for the cracked laminate. Since there is no
periodicity in the width direction, the width of the unit cell
is chosen large enough such that the errors due to effects
from the free edges are negligible. Thus the cell used is
not a unit cell, but a ‘‘representative” unit cell.

In a real scenario (experiments), the crack spacing may
be different in different plies. To account for this, two ex-
treme situations are modeled here. The first case refers to
the scenario when cracks in all cracked layers intersect at
the same X1 location and hence there is maximum interac-
tion between cracks. The other extreme is when the cracks
in different cracked layers are far apart and do not interact.
The real behavior will be between the two extremes. The
unit cell shown in Fig. 3 actually refers to the first scenario.

4. Results and discussion

4.1. FE simulations methodology

As can be seen from the flowchart in Fig. 4, SDM requires
determination of material constants a0i from the results for a
reference laminate. For the present case of ½0m=� hn=90r�s
laminates, we choose ½0=903�s, i.e., h ¼ 90� and m ¼ n ¼
r ¼ 1, as the reference laminate. The stiffness–damage re-
sults for this cross-ply laminate can be obtained in a variety
of ways. The most obvious way would be by using experi-
mental data. However, although experiments reflect the
real material behavior, they can be performed for limited
cases. An alternative and more general way is to use a
numerical tool such as an FE model to simulate stiffness
degradation. FE simulations are in fact easier to carry out
and have no scatter other than the accuracy of computa-
tions that may depend on mesh density and implementa-
tion of boundary conditions. Moreover, they can also be
used to predict stiffness changes in other laminate layups.
Thus, in what follows next, we will compare SDM predic-
tions with independent FE simulations.

To gain confidence in the above approach for cracked
Fig. 5. FE simulation of stiffness reduction for ½0=908=01=2�s lamin
off-axis laminates, we first validated the FE simulations
methodology with the experimental data. Using an FE mod-
el, stiffness degradation in ½0=� h4=01=2�s glass-epoxy lami-
nates was simulated. The crack density along X1 direction
(or equivalently, the crack spacing) was varied by changing
the length of the unit cell considered. Linear FE analyses
using ANSYS 10.0 were conducted for crack spacing,
sh ¼ 16;8;4;3;2;1:5;1:25;1;0:75;0:6 and 0.5 mm. The lon-
gitudinal modulus and the Poisson’s ratio of the damaged
laminate were obtained using the volume averaging of
stresses and strains as given by the following equations

E1 ¼
hr11i
h�11i

ð18Þ

m12 ¼ �
h�22i
h�11i

ð19Þ

Fig. 5 compares FE simulations with the published
experimental data Varna et al. (1999) for ½0=908=01=2�s lam-
inate configuration. As can be seen these simulations show
excellent agreement with the experimental data.

4.2. SDM predictions

Following the SDM flowchart (Fig. 4), stiffness predic-
tion entails three main steps:

1. Using FE computations, evaluate constraint parameters
for each damage mode and the effective damage param-
eter D, given by Eqs. (7) and (8).

2. Determinate damage constants a0i appearing in Eq. (6)
using the stiffness degradation data for a pre-selected
reference laminate, viz. ½0=903�s.

3. Predict stiffness changes for ½0m=� hn=90r �s laminates
using the stiffness–damage relations (Eqs. (13)–(16)).

We will describe these steps in the following paragraphs.

4.2.1. CODs and interaction between damage modes
As seen from Eq. (8), the constraint parameters are given

as average COD ðDuyÞ normalized by crack size (or thickness
of the cracked layer). To estimate Duy numerically (Eq. (9)),
ate compared with experimental data Varna et al. (1999).
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Duy is determined from nodal y-direction (normal to the
crack plane) displacements averaged over the entire crack
surface. CODs in two symmetric modes (þh and �h-cracks)
are added together to get DðuyÞ�h based on an observation
in our previous paper (Singh and Talreja, 2008) that these
two symmetric damage modes can be added together to
yield one equivalent damage mode.

For ½0m=� hn=90r �s laminates, three cracking modes are
present in the damaged material. Due to similarity in the
constraining nature and the influence on material response
of the cracks in þh and �h layers, these cracking modes can
be coupled together to yield one effective�h-damage mode
(see Appendix). However, �h and 90� cracking modes can
interact and influence the stress pattern around cracks in
cracked as well as in un-cracked layers, thereby affecting
the overall stiffness properties of the cracked laminate.
Thus, one needs to incorporate this interaction between dif-
ferent cracking modes into the damage model.

The stiffness–damage relations derived in the present
work do not explicitly account for the interaction between
different damage modes because the polynomial used for
Helmholtz free energy function (Eq. (A-6)) does not contain
terms involving product of DðaÞij terms, e.g., Dð1Þ1 Dð2Þ1 ;Dð1Þ2 Dð2Þ2 ,
etc. However, the SDM approach provides an indirect
means of dealing with intra-mode interaction through cal-
culation of COD using FE model with multi-mode cracks.
Let us consider the following two cases

1. No interaction between damage modes: This scenario
will exist when the cracks in different damage modes
are far apart and thus their mutual interaction is not sig-
nificant. This can be simulated in the FE model by consid-
ering two damage modes separately and then adding
(superposing) their effects. Thus, for ½0m=� hn=90r �s lam-
inate, we carry out COD calculations in two different
cracking conditions. In the first case, cracks are present
only in �hn layers, while in the second case cracks are
present only in the 90r layers.

2. Maximum interaction between damage modes: This
scenario will occur when the cracks in different damage
modes are sufficiently close to cause additional pertur-
bation in the stress fields on top of that due to individual
damage modes. The total perturbation effect can be cap-
tured in the SDM technique indirectly in the calculated
COD when both �hn and 90r layers are cracked. The
interaction effect is actually observed in experiments,
Table 1
Normalized average COD 103 Duy

tc

� �
.

Laminate configuration Non-interacting modes

þh layer �h layer �h layer 9

½0=� 25=90�s 0.92 1.08 1.00 5
½0=� 40=90�s 2.00 2.21 2.11 5
½0=� 55=90�s 4.38 4.66 4.52 6
½0=� 70=90�s 6.13 6.64 6.38 6
½0=� 80=90�s 7.37 8.09 7.74 6
½0=� 90=90�s – – – –
½0=903�s – – – –
½02=� 55=90�s 4.30 4.60 4.45 6
½0=� 552=90�s 4.78 5.14 4.96 6
½0=� 55=902�s 4.47 4.71 4.59 6
e.g., for ½0=90=� 45=45�s laminates, Tong et al. Tong et
al. (1997a) observed that �45� cracks grew from the
points of intersection of the 90� cracks at the 90�/�45�
interface, and +45� cracks initiated at the locations
where �45� cracks met the �45�/+45� interface. Hence,
while modeling multi-mode damage scenario, one
should consider these interaction effects.

It is noteworthy here that the two cases represent ex-
tremes and the real material behavior is expected to be
somewhere in between.

The normalized average CODs for various laminate lay-
ups are given in Table 1. The average CODs are nondimen-
sionalized by the cracked-ply thickness ð103 Duy

tc
Þ to give the

constraint parameters. The first and the second halves in
the table refer to the two cases described above. The col-
umns in the table give the normalized average CODs for lay-
ers in this order:þh;�h, their average (i.e., for the combined
�h damage mode), and then 90�. ½0=� 90=90�s is just a hypo-
thetical case where cracks are in �90 layers. This is done in
order to get jhjh¼90 (see Eqs. 7, 8). From the table, it can be
observed that the influence of crack interaction is the least
for þh-cracking mode, and the highest for 90� mode. As h
in ½0m=� hn=90r �s laminates increases, this interaction be-
comes increasingly significant. It can also be observed that
the interaction is not influential for ply orientations away
from 90�. The influence of crack interaction on stiffness
changes will be discussed in the following sub-sections.

4.2.2. Calculation of damage constants a0i
In the second step, we obtain damage constants a0i using

the degradation results for the reference laminate configu-
ration ½0=903�s. Although these results can be taken from
experimental data or an analytical model, we use FE for cal-
culation of stiffness changes for this reference laminate
configuration as per the discussion above. Using Eq. (6)
with h ¼ 90 and a preselected sh

n ¼ s90 ¼ s0, we obtain

E0
1

1�m0
12

m0
21

m0
12E0

2
1�m0

12
m0

21
0

E0
2

1�m0
12m

0
21

0

Symm G0
12

2
66664

3
77775þ D0

2a01 a04 0
2a02 0

Symm 2a03

2
64

3
75

¼

E1
1�m12m21

m12E2
1�m12m21

0
E2

1�m12m21
0

Symm G12

2
664

3
775

ð20Þ
Interacting modes

0� layer þh layer �h layer �h layer 90� layer

.30 0.93 1.09 1.01 5.31

.68 2.03 2.23 2.13 5.70

.31 4.83 6.05 5.44 7.50

.72 7.09 9.86 8.48 9.06

.84 8.53 12.02 10.27 9.22
– – 11.44 –
– – – 7.11

.25 4.70 5.91 5.31 7.39

.27 5.07 6.13 5.60 9.72

.83 5.58 7.68 6.63 7.71
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where D0 ¼ Djsh
n¼s90¼s0 ;h¼90, and the right-hand side of the

equation represents the stiffness matrix of the damaged
laminate expressed in terms of E1; E2;G12; m12 and m21 eval-
uated at crack density sh

n ¼ s90 ¼ s0. Solving this equation
the material constants of interest can be written as

a01 ¼
1

2D0

E1

1� m12m21
� E0

1

1� m0
12m0

21

" #

a02 ¼
1

2D0

E2

1� m12m21
� E0

2

1� m0
12m0

21

" #

a04 ¼
1

D0

m12E1

1� m12m21
� m0

12E0
1

1� m0
12m0

21

" #
ð21Þ

For the present study, we have calculated the constants
a0i with FE data for the reference ½0=903�s laminate with
s0 ¼ 1 mm, given as: E1 ¼ 0:675E0

1; E2 ¼ E0
2; m12 ¼ 0:464m0

12.
It is noted that the shear modulus for the cracked laminate
can in principle be treated using Eq. (16) independent of the
other moduli. But it needs evaluation of constant a03, which
would require setting up a boundary value problem differ-
ent from that needed to determine the other moduli. Hence,
we shall not treat the shear modulus here.
Fig. 6. Stiffness reduction for ½0=� 70=90�s laminate compared w

Fig. 7. Stiffness reduction for ½0=� 55=90�s laminate compared w
4.2.3. Predicted stiffness changes for ½0=� h=90�s laminates
Finally, Eqs. (13)–(15) are used to predict the stiffness

degradation in ½0=� h=90�s laminates for different ply ori-
entations. The comparison of SDM predictions and FE sim-
ulations for h ¼ 70;55 and 40� are shown in Figs. 6–8. SDM
predictions are made using CODs determined for interact-
ing damage modes (i.e., both �h and 90� cracks present)
as well as non-interacting damage modes. For h ¼ 70� and
55�, SDM predictions agree reasonably well with FE simula-
tions. However, for h ¼ 40�, SDM procedure predicts less se-
vere degradation in axial modulus and in-plane Poisson’s
ratio than FE computations. This appears to be because
the assumption in Eq. (A-23) is expected to limit the accu-
racy of the procedure to h-angles greater than 60�. How-
ever, the experimental studies (e.g., Varna et al., 1999;
Tong et al., 1997a) have also shown that for axially loaded
laminates, transverse cracks do not grow fully for ply orien-
tations below h ¼ 55� and the failure in laminates is actu-
ally induced by delamination.

It is important to note that in the present study, we have
not considered the degradation of shear modulus due to
shear deformation in off-axis plies. This is still a less-under-
stood topic. However, one can include shear deformation
ith FE simulations. The crack density is along X1 direction.

ith FE simulations.. The crack density is along X1 direction.



Fig. 8. Stiffness reduction for ½0=� 40=90�s laminate compared with FE simulations. The crack density is along X1 direction.
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effects indirectly into SDM by using shear modulus varia-
tion with respect to applied loading as shown by Varna
et al. Varna et al. (1999).

4.2.4. Predictions for quasi-isotropic laminates
The experimental data available for stiffness degrada-

tion in off-axis laminates involving cracks in multiple ply
orientations under quasi-static loading are limited to qua-
si-isotropic laminates. Here we compare our predictions
with the work by Tong et al. Tong et al. (1997a), who car-
ried extensive measurements of stiffness degradation in
½0=90=� 45�s glass-epoxy laminate. They observed par-
tially initiated cracks in �45�-layers and plotted stiffness
changes of the whole laminate as a function of 90�-crack-
ing density.

For stiffness predictions using the SDM approach, the
corresponding material constants a0i are evaluated from
experimental data for ½0=90�s laminate, shown in Fig. 9.
The individual ply thickness for this laminate is 0.5 mm.
This laminate corresponds to the ½0m=90r=� hn�s configura-
tion for which the stiffness–damage relations are given in
Fig. 9. Stiffness reduction for quasi-isotropic (½0=90=� 45�s) laminate compare
calculated using CDM for ½0=90�s laminate. The crack density is along X1 directi
Eqs. (13)–(15), D is given in Eq. (10), and the constraint
parameters are defined in Eq. (11). The normalized average
CODs were again determined using FE analysis. The corre-
sponding constraint parameters are calculated as: j904nþ2r ¼
6:1e�3;jhjh¼90�j90¼5:4e�3;jhþ ¼3:97e�3;jh� ¼3:35e�3;
jh¼ 1

2ðjhþ þjh� Þ¼3:66e�3.
In experiments Tong et al. (1997a) �45�-cracks did not

grow fully and laminates failed by delamination. However,
in FE analysis, we have assumed all cracks to be fully
grown through laminate width. Now, the degradation ef-
fects due to cracks in a given layer (i.e., given crack size)
should be directly proportional to the surface area of all
the existing cracks. Thus, to account for partially grown
cracks, we can reduce the crack density for that layer by
a ‘‘relative density factor”, defined as

qr ¼
Actual surface area for partial cracks

Surface area for full cracks
ð22Þ

To find the actual surface area of partial cracks, the
information regarding their actual length (along lamina
width) is necessary. Since such data was not reported in
d with experimental data Tong et al. (1997a). The damage constants are
on.
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the above experimental study Tong et al. (1997a), we con-
sider two cases. We assume that the �45 cracks grow to
half the laminate width in the first case and to 1=4th in
the latter, i.e., qr ¼ 0:5; 0:25, respectively.

SDM predictions for these cases using the FE computed
CODs are shown against cracks density in 90�-ply in Fig. 9.
The cracks in �45�-ply initiate at a cracks density of about
0.7 cracks/mm in 90�-ply, whereas the cracks in +45�-ply
initiate about 0.8 cracks/mm. The dotted line for
½0=90=� 45�s laminate represents damage in 90�-ply only.
The SDM predictions for the two cases of partial cracks
are shown for qr ¼ 0:5 and qr ¼ 0:25 by dashed and solid
lines, respectively. The results for both axial modulus and
Poisson’s ratio are in very good agreement with the test
data. The prediction with reduced crack density ap-
proaches a more realistic magnitude of stiffness degrada-
tion. The exact evaluation will, however, require the
knowledge of crack length, their densities and evolution
in each cracked layer with applied strain.

4.3. Parametric study

To seek further validation of the SDM procedure and to
gain insight into the effects of relative thickness and stiff-
Fig. 10. Stiffness reduction for ½02=� 55=90�s laminate compared w

Fig. 11. Stiffness reduction for ½0=� 552=90�s laminate compared w
ness of cracked vs. uncracked plies, we conduct a paramet-
ric study. The key again is numerical computation of
constraint parameters. This can be attained by performing
a suitable study of COD changes due to variation in material
and geometry parameters of the laminate. Here, we carried
out the study by varying the relative thickness of cracked
and un-cracked layers for laminates in the class of
½0m=� hn=90r�s layup. The constants a0i are taken from previ-
ous analysis for the reference ½0=903�s laminate. The com-
parison of SDM predictions for m ¼ 2;n ¼ 2 and p ¼ 2
with numerical computations for a representative ply ori-
entation, h ¼ 55�, are shown respectively in Figs. 10–12. Ex-
cept for the axial Poisson’s ratio for ½0=� 552=90�s, the
results show good agreement with FE simulations. Obvi-
ously, stiffness changes are most severe for p ¼ 2 and least
severe for m ¼ 2. In fact, there is negligible difference in re-
sults for m ¼ 1 and m ¼ 2. Also, the interaction between
damage modes increases as the thickness of cracked
layer(s) increases. The general observation is that the thick-
ness of cracked layer(s) has a significant impact on stiffness
changes whereas increasing thickness of supporting plies
has small effect on overall properties of the cracked lami-
nate. The same observation was made for ½0m=� hn=0m=2�s
laminates in Singh and Talreja (2008).
ith FE simulations. The crack density is along X1 direction.

ith FE simulations. The crack density is along X1 direction.



Fig. 12. Stiffness reduction for ½0=� 55=902�s laminate compared with FE simulations. The crack density is along X1 direction.
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Similar parametric studies can also be used to evaluate
stiffness changes with varying degree of relative material
stiffnesses of un-cracked and cracked layers, e.g., if 0�-layer
is made of different material than off-axis plies. These para-
metric studies enable efficient computations during design
of laminated structures.

4.4. Discussion and assessment of the SDM approach for
multi-mode damage

The stiffness–damage relationships (6), or equivalently,
in engineering moduli form, Eqs. (13)–(16), provide the ba-
sis for predicting RVE-averaged stiffness properties for
½0m=� hn=90r �s laminates with simultaneous cracks in þh
and �h-plies, as well as in 90�-plies. These relationships,
which are for an initially orthotropic laminate, state that
the laminate is orthotropic also with ply cracks present.
The procedures for calculating the damage parameter D
and the damage-material constants a0i appearing in these
equations have been described above. As noted above, we
have treated the three coupled Eqs. (13)–(15), while Eq.
(16), which involves shear response, has been left for future
work. The shear response has been treated by other ap-
proaches, (e.g., Kashtalyan and Soutis, 2007).

While the predictions by the SDM approach can be
viewed as satisfactory for changes in E1 and m12 for the class
of laminates considered, as evidenced by comparisons in
Figs. 6–12, it must be noted that the prediction of damage
induced stiffness for multi-mode damage in general lami-
nates is still a challenge. The previous work for ½0m=� hn=

0m=2�s laminates (Singh and Talreja, 2008), and the current
effort for ½0m=� hn=90r�s and ½0m=90r=� hn�s laminates, ta-
ken together, show a path forward to meeting that chal-
lenge. However, to proceed further, we must note the
limitations in what has been accomplished in the present
work. Firstly, the evaluation of the constraint parameters,
as discussed in Section 4.2.1, requires calculating the aver-
age CODs from an FE model of the representative unit cell.
The FE model shown in Fig. 3 is for an imposed uniform dis-
placement in the axial direction. The CODs from this model
allow evaluation of the constraint parameters that success-
fully lead to predictions of axial properties E1 and m12. Note
that the assumption made in deriving Eq. (A-22), namely,
ai P bi, is likely valid only for the case of axial loading of
the laminate with damage. More work is needed to investi-
gate the lateral loading case and to examine the associated
prediction procedure for E2 and m21.

On the limitations side of the current SDM approach, we
also note that the stiffness–damage relationships (Eq. (6))
are linear in the damage parameter as a consequence of
restricting the polynomial expansion, Eq. (A-6), to linear
terms in damage. This restriction can be easily relaxed at
the cost of requiring more data for prediction of stiffness
changes. It turns out, however, that the predictions by the
linearized equations is quite satisfactory in most cases for
crack densities of up to 1.0 cracks/mm, as seen in Figs. 6–
12. In practical design one would seldom exceed such high
crack densities, particularly when most cases examined
experimentally show that delamination sets in when plies
are cracked extensively. One more implication of the linear-
ization is in evaluating the damage-material constants a0i.
As seen from Eq. (21), evaluation of these constants re-
quires knowing changes in E1; E2 and m12 for a selected cross
ply laminate (here ½0=903�s), at one fixed crack density, as
described in Section 4.2.2. Because of the linearization,
while the actual stiffness dependence on damage is approx-
imately linear, at least until reasonably high crack densities,
the choice of the fixed crack density would affect the values
of the a0i constants. It turns out however, that a prudent
choice of 1.0 cracks/mm gives fairly accurate stiffness pre-
dictions, except perhaps for h ¼ 70� as seen in Fig. 6.

The CDM formulation for constitutive relationships used
here is based on a simplification stated early on in Talreja
(1990) and having to do with crack surface displacements.
Assuming brittle cracks whose formation and growth are
governed by COD, the crack sliding displacement (CSD)
was neglected. Thus, the quantity ‘a’ in Eq. (1) represents
COD. Later in a work related to damage in ceramic matrix
composites Talreja (1991) the CSD was incorporated for fi-
ber/matrix interfacial slip. Treating the COD and CSD sepa-
rately significantly simplifies evaluation of the constraint
parameter and leads to practical SDM methodologies for
stiffness prediction. However, in using these methodologies
caution should be exercised regarding where they are
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applicable. In a work published after submission of our
manuscript, Varna (2008) evaluated the effect of neglecting
CSD in the SDM formulation. As expected, the prediction er-
ror is small for off-axis cracks at and near 90�, and increases
with decreasing off-axis angle. It should be noted, however,
that cracks are increasingly difficult to produce by an axial
load as the off-angle angle decreases. It is further noted that
the CSD cannot be neglected for shear-induced response,
which has not been treated here.

5. Conclusions

The previously developed synergistic damage mechanics
approach for ½0m=� hn=0m=2�s laminates in Singh and Talreja
(2008) has been extended here for ½0m=� hn=90r �s and
½0m=90r=� hn�s laminates with cracks in 90�-plies in addition
to the cracks in þh- and �h-plies. The extension is far from
trivial, as the new case considered here has two distinct
damage modes while in the previous case the two h crack ar-
rays could be treated equivalently as a single damage mode.

The stiffness–damage relationships for in-plane loading,
derived for the current case of simultaneous presence of two
damage modes subjected to enforced orthotropic symmetry
of the cracked laminate, lead to four new damage related
constants. A procedure for determining three of the con-
stants, corresponding to axial loading, has been presented.
Evaluation of these constants can be done from known stiff-
ness changes of a cross ply laminate at a fixed crack density.
These known stiffness values can be obtained experimen-
tally, or, as demonstrated here, from a finite element model.
A damage parameter representing the two simultaneous
damage modes has been evaluated from a finite element
model of the representative unit cell of the laminate con-
taining damage by calculating the crack-surface averaged
opening displacements. The stiffness predictions of inde-
pendent cases using the evaluated material constants and
the damage parameter show good agreement with directly
calculated values by finite element models. Further valida-
tion of the prediction procedure comes from a parametric
study of cracked and uncracked ply thicknesses.

Although the methodology developed here is still not fully
general, the limitations being in linearization of the stiffness–
damage relationships and in not considering shear loading, it
is the first such treatment for multi-mode damage. Further
work in the direction pursued is thought to provide further
advance in treating damage of general laminates.

Appendix

Here we derive the stiffness–damage relations for three
modes of damage. With the damage mode tensors
DðaÞij ;a ¼ 1;2 and 3, taken as internal variables, the
Helmholtz free energy is given by

qw ¼ qw �ij;D
ðaÞ
ij

� �
ðA-1Þ

where w is the specific Helmholtz energy, q is the mass
density, and �ij is the strain tensor. Using the second law
of thermodynamics in the form of the Clausius-Duhem
inequality, stress response for a given state of damage is
given by Talreja (1990)
rij ¼ q
@w
@�ij

ðA-2Þ

Utilizing the linear elastic stress–strain relation
rij ¼ Cijkl�kl for the composite material, its stiffness tensor
Cijkl is given by

Cijkl ¼ q
@2w

@�ij@�kl
ðA-3Þ

Composite laminates used in practice are usually sym-
metric and balanced about the mid-plane. Such stacking
introduces an orthotropic symmetry of the laminate in its
virgin state. To incorporate this material symmetry, the
integrity bases (Adkins, 1960; Smith, 1982) are used to ex-
press qw as a polynomial function. Here, we are interested
in describing damage in ½0m=� hn=90r � laminates with the
following three damage modes

Damage Mode 1 ) a ¼ 1; cracks in þ h plies
Damage Mode 2 ) a ¼ 2; cracks in � h plies
Damage Mode 3 ) a ¼ 3; cracks in 90� plies

For illustration purpose, we will first consider the lami-
nate where the first two damage modes are active. Once we
have formulated the stiffness matrix for this case, we will
extend it to include the third damage mode as well. The
irreducible integrity bases for a scalar polynomial function
of symmetric second rank tensors (strain and two damage
mode tensors) for this case ða ¼ 1;2Þ are given by Adkins
(1960); Smith (1982)

�11; �22; �33; �2
23; �

2
31; �

2
12; �23�31�12;

Dð1Þ11 ; Dð1Þ22 ; Dð1Þ33 ; Dð1Þ23

� �2
; Dð1Þ31

� �2
; Dð1Þ12

� �2
; Dð1Þ23 Dð1Þ31 Dð1Þ12 ;

Dð2Þ11 ; Dð2Þ22 ; Dð2Þ33 ; Dð2Þ23

� �2
; Dð2Þ31

� �2
; Dð2Þ12

� �2
; Dð2Þ23 Dð2Þ31 Dð2Þ12 ;

�23Dð1Þ23 ; �31Dð1Þ31 ; �12Dð1Þ12 ; �23Dð2Þ23 ; �31Dð2Þ31 ; �12Dð2Þ12 ;

�31�12Dð1Þ23 ; �12�23Dð1Þ31 ; �23�31Dð1Þ12 ; �31�12Dð2Þ23 ; �12�23Dð2Þ31 ;

�23�31Dð2Þ12 ;

�23Dð1Þ31 Dð1Þ12 ; �31Dð1Þ12 Dð1Þ23 ; �12Dð1Þ23 Dð1Þ31 ; �23Dð2Þ31 Dð2Þ12 ;

�31Dð2Þ12 Dð2Þ23 ; �12Dð2Þ23 Dð2Þ31 ;

�23Dð1Þ31 Dð2Þ12 ; �31Dð1Þ12 Dð2Þ23 ; �12Dð1Þ23 Dð2Þ31 ; �23Dð2Þ31 Dð1Þ12 ;

�31Dð2Þ12 Dð1Þ23 ; �12Dð2Þ23 Dð1Þ31 ðA-4Þ

If we consider a thin laminate loaded in its plane, this set
of integrity bases can be further reduced by considering
only the in-plane strain and damage tensor components.
Thus, the remaining integrity bases in the Voigt notation,
for the case with two damage modes, are given by

�1; �2; �2
6

Dð1Þ1 ; Dð1Þ2 ; Dð1Þ6

� �2
; Dð2Þ1 ; Dð2Þ2 ; Dð2Þ6

� �2

�6Dð1Þ6 ; �6Dð2Þ6

ðA-5Þ

where �1	 �11; �2	 �22; �6	 �12; D1	D11; D2	D22; D6	
D12. Using these integrity bases, the most general polyno-
mial form for qw, restricted to second order terms in the
strain components (small strains) and first-order terms in
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damage tensor components (small volume fraction of dam-
age entities in the RVE), is given by

qw ¼ P0 þ c1�2
1 þ c2�2

2 þ c3�2
6 þ c4�1�2

þ �2
1 c5Dð1Þ1 þ c6Dð1Þ2 þ c7Dð2Þ1 þ c8Dð2Þ2

n o
þ �2

2 c9Dð1Þ1 þ c10Dð1Þ2 þ c11Dð2Þ1 þ c12Dð2Þ2

n o
þ �2

6 c13Dð1Þ1 þ c14Dð1Þ2 þ c15Dð2Þ1 þ c16Dð2Þ2

n o
þ �1�2 c17Dð1Þ1 þ c18Dð1Þ2 þ c19Dð2Þ1 þ c20Dð2Þ2

n o
þ �1�6 c21Dð1Þ6 þ c22Dð2Þ6

n o
þ �2�6 c23Dð1Þ6 þ c24Dð2Þ6

n o
þ P1 �p;D

ð1Þ
q

� �
þ P2 �p;D

ð2Þ
q

� �
þ P3 Dð1Þq

� �
þ P4 Dð2Þq

� �
ðA-6Þ

where P0 and ci are material constants, P1 and P2 are linear
functions of strain and damage tensor components, and P3

and P4 are linear functions only of the damage tensor com-
ponents. Setting qw ¼ 0 for unstrained and undamaged
material, we have P0 ¼ 0; and assuming the unstrained
material of any damaged state to be stress-free, we get
P1 ¼ P2 ¼ 0 on using Eq. (A-2). Considering the virgin
material to be orthotropic and proceeding in a similar
manner as given in Talreja (1996), we obtain following
relations for stiffness matrix of the damaged laminate

Cpq ¼ C0
pq þ Cð1Þpq þ Cð2Þpq ðA-7Þ

where p; q ¼ 1;2;6;C0
pq is the stiffness coefficient matrix of

the virgin laminate and the changes in stiffness brought
about by the individual damage modes are represented
by Cð1Þpq and Cð2Þpq . The three matrices are given by

C0
pq¼

2c1 c4 0
c4 2c2 0
0 0 2c3

2
64

3
75¼

E0
1

1�m0
12

m0
21

m0
12 E0

2
1�m0

12
m0

21
0

m0
12E0

2
1�m0

12
m0

21

E0
2

1�m0
12

m0
21

0

0 0 G0
12

2
66664

3
77775 ðA- 8Þ

Cð1Þpq ¼
2c5Dð1Þ1 þ2c6Dð1Þ2 c17Dð1Þ1 þ c18Dð1Þ2 c21Dð1Þ6

2c9Dð1Þ1 þ2c10Dð1Þ2 c23Dð1Þ6

Symm 2c13Dð1Þ1 þ2c14Dð1Þ2

2
664

3
775

ðA- 9Þ

Cð2Þpq ¼
2c7Dð2Þ1 þ2c8Dð2Þ2 c19Dð2Þ1 þc20Dð2Þ2 c22Dð2Þ6

2c11Dð2Þ1 þ2c12Dð2Þ2 c24Dð2Þ6

Symm 2c15Dð2Þ1 þ2c16Dð2Þ2

2
664

3
775

ðA-10Þ

where E0
1; E

0
2; m0

12 and m0
21 are longitudinal modulus, trans-

verse modulus, and major and minor Poisson’s ratios,
respectively, for the virgin laminate.

Since we are dealing here with off-axis ply cracking, it is
more convenient to rewrite the damage mode tensor de-
fined in Eq. (4) in terms of normal crack spacing, sh

n ¼
sh sin h, where sh is the crack spacing in the axial direction
(see Fig. 1) for the ply of orientation h. Accordingly, the
damage tensor is given by

DðaÞij ¼
jt2

c

sh
nt

ninj ðA-11Þ
With reference to Fig. 1(c) where the orientations of the
two damage modes are shown and using Eq. (4), the dam-
age tensor elements for this scenario are given by

a ¼ 1 : nð1Þi ¼ ðsin h; cos h; 0Þ

Dð1Þ1 ¼
jhþ t2

c

shþ
n t

sin2 h; Dð1Þ2 ¼
jhþ t2

c

shþ
n t

cos2 h;

Dð1Þ6 ¼
jhþ t2

c

shþ
n t

sin h cos h ðA-12Þ

a ¼ 2 : nð2Þi ¼ ðsin h;� cos h;0Þ

Dð2Þ1 ¼
jh� t2

c

sh�
n t

sin h; Dð2Þ2 ¼
jh� t2

c

sh�
n t

cos2 h;

Dð2Þ6 ¼ �
jh� t2

c

sh�
n t

sin h cos h ðA-13Þ

where the superscripts hþ and h� indicate variables for þh
and �h plies, respectively. We now make an assumption
that will be evaluated in the main text of the paper: the
damage in þh-plies and �h-plies occurs at the same inten-
sity of damage and it has the same effect on the laminate
behavior. Thus,
jh ¼ jh ¼ jh; sh
n ¼ sh

n ¼ sh
n ðA-14Þ

With this assumption it follows that the laminate will re-
tain its orthotropic symmetry, implying that the normal
stress to shear stress coupling vanishes. Thus, from A-12,
A-13, A-14 and using (A-7), (A-9) and (A-10), we get

Cð1Þ11 þ Cð2Þ11 ¼ 2
jht2

c

sh
nt
½ðc5 þ c7Þ sin2 hþ ðc6 þ c8Þ cos2 h�

Cð1Þ22 þ Cð2Þ22 ¼ 2
jht2

c

sh
nt
½ðc9 þ c11Þ sin hþ ðc10 þ c12Þ cos2 h�

Cð1Þ66 þ Cð2Þ66 ¼ 2
jht2

c

sh
nt
½ðc13 þ c15Þ sin2 hþ ðc14 þ c16Þ cos2 h�

Cð1Þ12 þ Cð2Þ12 ¼
jht2

c

sh
nt
½ðc17 þ c19Þ sin2 hþ ðc18 þ c20Þ cos2 h�

Cð1Þ16 þ Cð2Þ16 ¼
jht2

c

sh
nt

sin h cos h½�c21 þ c22� ¼ 0

Cð1Þ26 þ Cð2Þ26 ¼
jht2

c

sh
nt

sin h cos h½�c23 þ c24� ¼ 0

ðA-15Þ

Finally,

Cð1Þpq þCð2Þpq ¼
2a1D1þ2b1D2 a4D1þb4D2 0

a4D1þb4D2 2a2D1þ2b2D2 0
0 0 2a3D1þ2b3D2

2
64

3
75

ðA-16Þ

where the superscripts for denoting damage mode have
been dropped for convenience, and ai and bi; i ¼ 1;2;3;4
are the two sets of four material constants, given by

a1 ¼ c5 þ c7; a2 ¼ c9 þ c11; a3 ¼ c13 þ c15; a4 ¼ c17 þ c19

b1 ¼ c6 þ c8; b2 ¼ c10 þ c12; b3 ¼ c14 þ c16; b4 ¼ c18 þ c20

ðA-17Þ
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Denote

a1ðhÞ ¼ a1 sin2 hþ b1 cos2 h

a2ðhÞ ¼ a2 sin2 hþ b2 cos2 h

a3ðhÞ ¼ a3 sin2 hþ b3 cos2 h

a4ðhÞ ¼ a4 sin2 hþ b4 cos2 h

ðA-18Þ

Then,

Cð1Þpq þ Cð2Þpq ¼ Dh

2a1ðhÞ a4ðhÞ 0
2a2ðhÞ 0

Symm 2a3ðhÞ

2
64

3
75 ðA-19Þ

where

Dh ¼
jht2

c

sh
nt

ðA-20Þ

Rewriting Eq. (A-18), as

aiðhÞ ¼ ai sin2 hþ bi cos2 h ¼ ai sin2 h 1þ bi

ai
cot2h

� �
ðA-21Þ

We now consider the case when ai 
 bi. Then,

bi

ai
cot2h 6 1 for

p
4
6 h 6

p
2

ðA-22Þ

Also, it can be expected that

bi

ai
cot2h� 1 for

p
3
6 h 6

p
2

i:e:; aiðhÞ � ai for
p
3
6 h 6

p
2

ðA-23Þ

Considering now that additionally, we have cracks in the
90�-plies for which the damage mode a ¼ 3 has the follow-
ing components

Dð3Þ1 ¼
j90t2

90

s90t
; Dð3Þ2 ¼ Dð3Þ6 ¼ 0 ðA-24Þ

where a0i; i ¼ 1;2;3;4 are material constants. The integrity
bases, Eq. (A-4), has an additional term Dð3Þ1 , and the free
energy function gets the following additional terms,

qwða ¼ 3Þ ¼ a01�
2
1Dð3Þ1 þ a02�

2
2Dð3Þ1 þ a03�

2
6Dð3Þ1 þ a04�1�2Dð3Þ1

ðA-25Þ

Following the steps taken above, we get

Cð3Þ11 ¼ 2a01Dð3Þ1 ; Cð3Þ22 ¼ 2a02Dð3Þ1

Cð3Þ12 ¼ a04Dð3Þ1 ; Cð3Þ66 ¼ 2a03Dð3Þ1

Cð3Þ16 ¼ Cð3Þ26 ¼ 0

ðA-26Þ

It is noted here that for ½0m=� hn=90r �s laminate, �h-
modes occur twice (below and above the laminate mid-
plane) whereas the central 90�-mode occurs only once.
Thus, the total stiffness change DCpq with all the three
modes active is given by
DCpq ¼2 Cð1Þpq þ Cð2Þpq

n o
þ Cð3Þpq ¼ 2Dh

2a1 a4 0
a4 2a2 0
0 0 2a3

2
64

3
75

þ D90

2a01 a04 0
a04 2a02 0
0 0 2a03

2
64

3
75 ðA-27Þ

where

D90 ¼ Dð3Þ1 ¼
j90t2

90

s90t
ðA-28Þ

and Eq. (A-23) has been used.
Now consider h ¼ 90� in the ½0m=� hn=90r �s laminate. Let

the normal crack spacing be the same in all cracked plies,
i.e., shþ

n ¼ sh�

n ¼ s90. Then, the terms of DCpq matrix become,
as illustrated by DC11 as

DC11 ¼ 2 Cð1Þ11 þ Cð2Þ11

n o
þ Cð3Þ11 ¼ 4Dhjh¼90a1ð90Þ þ 2D90a01

¼ 4jh¼90ðt0:2nÞ2

s90t
a1ð90Þ þ 2j90ðt0:2rÞ2

s90t
a01 ðA- 29Þ

¼ 8t2
0

s90t
2n2jh¼90a1ð90Þ þ r2j90a01
� 	

ðA-30Þ

where t0 is a single ply thickness. We can consider this
stiffness change to be the same as that for a ½0m=902nþr �s
laminate with a single mode of damage given by

D1 ¼
j904nþ2r t

2
0:fð4nþ 2rÞg2

s90t
ðA-31Þ

where the sub-subscript on j90 denotes the crack size. The
stiffness change DC11 will then be

DC11 ¼ 2a01D1 ¼
8t2

0

s90t
ð2nþ rÞ2j904nþ2r a

0
1 ðA-32Þ

Equating DC11 from Eqs. (A-30) and (A-32), we have

2n2jhjh¼90a1ð90Þ þ r2j90a01 ¼ ð2nþ rÞ2j904nþ2r a
0
1 ðA-33Þ

Solving the above equation, we obtain

a1ð90Þ ¼
ð2nþ rÞ2j904nþ2r � r2j90

2n2jhjh¼90

" #
a01 ðA-34Þ

Thus, the inter-relation between ai and a0i constants is gi-
ven by

ai ¼
ð2nþ rÞ2j904nþ2r � r2j90

2n2jhjh¼90

" #
a0i ðA-35Þ

Substituting (A-35) into (A-27), we obtain DCpq for dam-
aged ½0m=� hn=90r �s laminate as

DCpq¼2 Cð1Þpq þCð2Þpq

n o
þCð3Þpq ¼

4t2
0

t
2n2 jh

sh
n
½ai�þ r2 j90

s90 a0i
� 	� �

¼4t2
0

t
1
sh

n

jh

jhjh¼90
fð2nþ rÞ2j904nþ2r � r2j90gþ r2 j90

s90

� �
a0i
� 	

ðA-36Þ

where ½ai� and a0i
� 	

represent the coefficient matrices,
appearing as multiplying factors to 2Dh and D90, respec-
tively, in Eq. (A-27).
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Thus, the entire stiffness matrix is given by

Cpq ¼

E0
1

1�m0
12m

0
21

m0
12E0

2
1�m0

12m
0
21

0

E0
2

1�m0
12m

0
21

0

Symm G0
12

2
66664

3
77775þ D

2a01 a04 0
2a02 0

Symm 2a03

2
64

3
75

ðA-37Þ

where

D ¼ 4t2
0

t
1
sh

n

jh

jhjh¼90
fð2nþ rÞ2j904nþ2r � r2j90g þ r2 j90

s90

� �
ðA-38Þ
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