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laminates with ply cracks
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Abstract

We treat selected test cases in the third world wide failure exercise by the approach described as synergistic damage

mechanics. This approach utilizes micromechanics and continuum damage mechanics to predict the overall mechanical

response of composite laminates with ply cracking in multiple orientations. The material constants needed in the

continuum damage mechanic formulation are calculated from stiffness property changes incurred in a reference laminate.

For other laminate configurations, the stiffness changes are derived using a relative constraint parameter which is

calculated from the constraint on the opening displacement of ply cracks within the given cracked laminate evaluated

numerically by a finite element analysis of appropriately constructed representative unit cell. The number density of ply

cracks (cracks per unit length normal to the crack planes) under quasi-static loading is calculated by an energy-based

approach. Finally, the stress–strain response of a laminate is determined by combining stiffness property changes and

evolution of crack number density.
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Introduction and historical background

Failure analysis of composite materials is currently per-
formed by the industry using empirical criteria, none of
which properly accounts for the effects of damage pro-
cesses prior to complete failure. Significant develop-
ments in the past three decades suggest that
accounting for sub-critical damage will improve com-
posite design. While previous exercises1,2 focused on the
ultimate failure, the third world wide failure exercise
(WWFE-III)3 provides an opportunity to examine ini-
tiation and progression of sub-critical events and their
effect on the mechanical response.

In composite laminates, which are the subject of
examination in WWFE-III, the damage initiation pro-
cesses begin at the constituent level within a ply. In
most cases, ply cracks span the thickness and width
of the ply at relatively low loads. Subsequent loading
then results in multiplication of these cracks. It is
common, therefore, to start the analysis with assumed
presence of ply cracks and examine their evolution
(increase in number per unit length normal to crack
planes) as well as the effect of these cracks in changing
the laminate-averaged mechanical properties. The

approaches taken to address this problem can be
broadly characterized as micro-damage mechanics (or
simply, micromechanics), e.g. shear-lag methods, see
for example References [4–6], and continuum damage
mechanics (CDMs). Our current approach is to retain
the framework of CDM but enrich its capabilities by
combining it with micromechanics. We have called this
approach synergistic damage mechanics (SDM).
The present paper will first briefly describe the SDM
methodology and then apply it to selected cases of
WWFE-III.

The CDM7,8 uses a physically based damage charac-
terization that does not leave behind essential features
of damage in the context of the material response of

1Department of Materials Science and Engineering, University of Toronto,

Toronto, ON, Canada
2Department of Aerospace Engineering, Texas A&M University, College

Station, TX, USA
3Visiting Professor, Luleå University of Technology, Luleå, Sweden
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interest while keeping in sight practical implementation
of the resulting methodology. As argued in References
[7,8] and elaborated further in References [9–11], a
scalar-valued characterization would be inadequate in
view of the oriented nature of the internal surfaces
formed. Although a vector-valued characterization
was employed at first, the issue of ambiguity of the
sense of a vector could be addressed more elegantly
by using a second order tensor instead. The damage
characterization for ply cracking involved calculation
of a constraint parameter, �, which essentially captures
the environment of the cracked surfaces (e.g. effect of
surrounding plies), and a number of damage constants,
ci which depend on the laminate material. These con-
stants will be described later. The observation that the
�-parameter may be viewed as a carrier of the local
effects on damage entities within a ‘Representative
Volume Element’ (RVE), while the ci-constants are
material constants, led to a number of studies to
explore prediction of elastic property changes due to
damage in different modes. To be sure, the elastic prop-
erties are the averages over appropriate RVEs. CDM
model considered here predicts effective stiffness
changes for the whole laminate; layer-wise (or lamina-
wise) CDM model have also been developed.12,13

At first it was found that from changes in Ex and �xy
due to transverse cracking in [0/903]s glass/epoxy lamin-
ates reported in Reference [14] and assuming no
changes in Ey, changes in Ex for the same glass/epoxy
of [0/90]s configuration could be predicted with good
accuracy. Also, in [0/�45]s laminate of the same glass/
epoxy, the change in Ex could be predicted by setting
damage parameters D(þ45)¼D(�45) (a good approxi-
mation, supported by crack density data). These results
have been reported in Reference [9].

Later, a systematic study of the effect of constraint
on the constraint parameter was done by experimen-
tally measuring the crack opening displacement
(COD) in [��/902]s laminates15–17 for different �-
values. By relating these values to the COD at �¼ 90�

and normalized by a unit applied strain, the predictions
of Ex and �xy for different � could be made. Another
study of the constraint effects was made by examining
[0/��4/01/2]s laminates, where the ply orientation � was
varied. Once again, using experimentally measured
COD for �¼ 90� as the reference, the �-parameter for
other ply orientations was evaluated from the COD
values and Ex and �xy for different � were predicted.18

While the experimental studies supported the idea of
using the constraint parameter as a carrier of local con-
straints, the scatter in test data and the cost of testing
do not make the experimental approach attractive.
Therefore, another systematic study of [0m/��n/0m/2]s
laminates was undertaken19,20 where computational
micromechanics was employed instead of physical

testing as a means of evaluating the constraint param-
eter. An elaborate parametric study of the constraint
parameter allowed developing a master curve for elastic
property predictions. The most recent study21 examines
damage modes consisting of transverse ply cracks as
well as inclined cracks of different orientations in [0m/
��n/90r]s and [0m/90r/��n]s laminates. The SDM
approach is developed and its predictions are compared
with available experimental data for [0/90/�45/þ45]s
laminate.

At the current state of its development, the SDM
methodology has the ingredients of a multiscale
damage mechanics depicted in Figure 1. As illustrated
there, structural (macro-scale) analysis of a part contain-
ing damage is accomplished by a meso-scale
SDM analysis of appropriate RVE in which micro-
scale input from micromechanics (computed CODs) as
well as materials constants from a reference laminate
configuration are entered. What remains is to codify
this approach in software to be used by design engineers.

Theoretical details

Definition of damage

Consider a continuum body of a composite solid with a
matrix and embedded reinforcements as well as a multi-
tude of damage entities in the form of microcracks.
In CDM, the material microstructure, e.g., distributed
fibres, and the distributed damage, which may be called
the micro-damage structure, are treated as smeared-out
fields. For evaluating the effective properties of the con-
tinuum body, the continuum is homogenized using a
two-step homogenization procedure (see Figure 2). As
illustrated in the figure, the material microstructure is
viewed as consisting of ‘‘stationary’’ entities, e.g., fibres
and plies, and the micro-damage structure is considered
as a family of evolving entities, e.g., cracks and voids.
First the stationary microstructure is smeared into a
homogeneous, anisotropic material. In the next step,
the evolving microstructure is replaced by a homoge-
neous field represented by suitable internal variables.
The internal micro-damage structure evolves with load-
ing and causes changes of the overall response (proper-
ties) of the composite.

Resorting to Figure 2 again, consider a generic point
P inside the damaged composite body. Let an element
of volume V contain a representative sample of damage
entities about this point. An individual damage entity
(a crack or a void) can be viewed as bounded by a
surface S, on which any point can be associated with
two vectors, one of which, a, represents a selected influ-
ence of the damage entity, and the other, n, is the unit
outward normal to the surface. Let the surface integral
of dyadic product of the vector components ainj be
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Figure 1. Multiscale synergistic methodology for analyzing damage behaviour in a general symmetric laminate [0m/��n/90r]s with

matrix cracks in þ�, �� and 90� layers.

Step 2

Step 1

P

ai nj
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stationary microstructure
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evolving microstructure

Characterization of a 
damage entity

RVE for damage characterization

Fully homogenized continuum

P

V
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Evolving microstructure

Continuum after homogenizing
the stationary microstructures

Figure 2. Homogenization of a continuum body with damage.
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denoted by the second-order tensor components dij.
Thus,

dij ¼

Z
s

ainjdS ð1Þ

The total set of damage entities may be divided in
subsets of entities having same geometrical characteris-
tics (orientation, shape, etc.) and termed as damage
modes. For example, matrix cracks may constitute
one damage mode, while fibre/matrix debonds may
constitute another. Also, matrix cracks in different
orientations may be grouped into different damage
modes. Assuming that there are N damage entities of
a given mode a in the RVE, the damage mode tensor is
defined by

D
�ð Þ
ij ¼

1

V

X
k�

dij
� �

k�
ð2Þ

where k� ¼ 1, 2, . . . ,N and V is the volume of the RVE.
Let us now focus on the particular case of intrala-

minar cracking in composite laminates. Figure 3 shows
an RVE illustrating one set of intralaminar cracks in an
off-axis ply of a composite laminate. Although for clar-
ity of illustration, the cracking is shown only in one
lamina, it is understood that in general it exists in mul-
tiple plies of the laminate. The thickness of the cracked
plies is denoted by tc, s is the average crack spacing, t is
the total laminate thickness and W and L stand for
the width and the length, respectively, of the RVE.
The volume of the RVE, the surface area of a
crack, S, and the influence vector magnitude, a, are
specified as

V ¼ L �W � t

S ¼
W � tc
sin �

a ¼ �tc

ð3Þ

where �, called the constraint parameter, is an unspeci-
fied constant of (assumed) proportionality between a
and the crack size tc (also cracked-ply thickness).
Here, 0� �� p/2, so that S is always positive.
Assuming a to be constant over the crack surface S,
one gets from equation (2)

D
�ð Þ
ij ¼

�t2c
st sin �

ninj ð4Þ

where ni ¼ sin �, cos �, 0ð Þ.

The synergistic damage mechanics methodology

For the mechanical response of a damaged body in
isothermal condition, the Helmholtz free energy func-
tion is given by9

 ¼  "ij,D
�ð Þ
ij

� �
ð5Þ

Helmholtz free energy is thus a function of the
damage state. The energy change brought about
by damage is represented by terms involving D

�ð Þ
ij .

The stress tensor is then given by

�ij ¼ �m
@ 

@"ij
ð6Þ

where �m is the mass density.
For a linear elastic homogenized body,

�ij ¼ Cijkl"kl ð7Þ

where the stiffness matrix Cijkl is given in the Voigt
notation as

Cpq ¼ C0
pq þ

X
�

C �ð Þ
pq ð8Þ

where C0
pq is the initial (undamaged) stiffness

matrix and
P

� C
�ð Þ
pq represents the stiffness changes

brought about by all the damage modes. In the follow-
ing, we consider the different cases of cracking in
composite laminates and derive the corresponding
damage-stiffness relations.

Case 1: Only 90� ply is cracked (single damage mode). Let us
consider the Helmholtz free energy for a composite
laminate with its 90� ply cracked. As shown
before,8–10 a polynomial form is most suited for our
formulation. Assuming the composite laminates in con-
sideration to be orthotropic, the form of the polyno-
mial must remain invariant with respect to the
coordinate transformations expressing this symmetry.
Such restrictions to polynomial functions are satisfied
by making use of certain polynomial invariants called
the irreducible integrity basis.23,24 Considering a single
damage mode, � ¼ 1, we have the following set of
invariants

"11, "22, "33, "
2
23, "

2
31, "

2
12, "23"31"12

D11,D22,D33,D
2
23,D

2
31,D

2
12,D23D31D12

"23D23, "31D31, "12D12,

"31"12D23, "12"23D31, "23"31D12,

"23D31D12, "31D12D23, "12D23D31 ð9Þ
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This set of integrity bases can be further reduced for
the case of a thin laminate loaded in its plane. For such
laminates, only the in-plane transformed strain and
damage tensor components need be considered. Thus,
the remaining integrity bases in the Voigt notation for
thin laminates are given by

"1, "2, "
2
6

D1,D2,D
2
6

"6D6 ð10Þ

where

"1� "11,"2� "22,"6� 2"12,D1�D11,D2�D22,D6�D12:

The most general polynomial form for Helmholtz free
energy, restricted to second-order terms in the damage

strain components and first order terms in damage
tensor components (low volume fraction of damage
entities), is given by

� ¼ P0 þ c1"
2
1 þ c2"

2
2 þ c3"

2
6 þ c4"1"2

� �
þ c5"

2
1D1 þ c6"

2
1D2

� �
þ c7"

2
2D1 þ c8"

2
2D2

� �
þ c9"

2
6D1 þ c10"

2
6D2

� �
þ c11"1"2D1 þ c12"1"2D2f g

þ c13"1"6D6 þ c14"2"6D6f g þ P1ð"p,DqÞ þ P2ðDqÞ

ð11Þ

where P0 and ci, i¼ 1,2, . . . , 14 are material constants,
P1 is a linear function of strain and damage tensor
components and P2 is a linear functions of damage
tensor components. Setting the free energy to zero for
unstrained and undamaged material, we have, P0¼ 0,
and assuming the unstrained material of any damaged
state to be stress-free, we get P1¼ 0. The stress

Figure 3. A representative volume element illustrating intralaminar multiple cracking in a general off-axis ply of a composite

laminate.
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components in the Voigt notation are now given by
(from equation (6))

�p ¼ �m
@ 

@"p
ð12Þ

where p¼ 1,2,6. From (11) and (12), we have

Cpq¼ C0
pqþC

ð1Þ
pq ð13Þ

where p, q¼ 1,2,6, and

C0
pq¼

2c1 c4 0

2c2 0

Symm 2c3

2
664

3
775

¼

E0
x

1� �0xy�
0
yx

�0xyE
0
y

1� �0xy�
0
yx

0

E0
y

1� �0xy�
0
yx

0

Symm G0
xy

2
666666664

3
777777775

ð14Þ

represents the orthotropic stiffness matrix for virgin
composite material, where E0

x,E
0
y, �

0
xy,G

0
xy are effective

moduli for the undamaged laminate (calculated using
CLT), and

Cð1Þpq¼

2c5D1þ2c6D2 c11D1þ c12D2 c13D6

2c7D1þ2c8D2 c14D6

Symm 2c9D1þ2c10D2

2
64

3
75
ð15Þ

represents the stiffness change brought about by the
damage entities for damage mode 1. For the special
case of laminates with cracks in only 90�-plies, we
obtain (�¼ 90�)

C 90ð Þ
pq ¼

�t2c
st

2a1 a4 0

2a2 0

symm 2a3

2
64

3
75 ð16Þ

whereai, i ¼ 1, . . . , 4 are material (laminate) constants
to be determined from experimental or computational
data on stiffness degradation. It can be observed that
the orthotropic symmetry is retained by intralaminar

cracking in cross-ply laminates. In the above relations,

the constraint parameter � ¼
�u2ð Þ
tc

where �u2
� �

and tc

represent the COD averaged over the crack surfaces

and the thickness of the cracked 90� layer, respectively.
The engineering moduli for the cracked laminate can be
obtained from the following relationships:

Ex ¼
C11C22 � C2

12

C22
Ey ¼

C11C22 � C2
12

C11

�xy ¼
C11

C22
Gxy ¼ C66

ð17Þ

Thus, for laminates with 90�-ply cracks only,

Ex ¼
E0
x

1� �0xy�
0
yx

þ 2 �Da1 �

�0xyE
0
y

1� �0xy�
0
yx

þ �Da4

" #2

E0
y

1� �0xy�
0
yx

þ 2 �Da2

Ey ¼
E0
y

1� �0xy�
0
yx

þ 2 �Da2 �

�0xyE
0
y

1� �0xy�
0
yx

þ �Da4

" #2

E0
x

1� �0xy�
0
yx

þ 2 �Da1

�xy ¼

�0xyE
0
y

1� �0xy�
0
yx

þ �Da4

E0
y

1� �0xy�
0
yx

þ 2 �Da2

Gxy ¼ G0
xy þ 2 �Da3 ð18Þ

where

�D ¼
�t2c
st

ð19Þ

As seen from equation (18), the shear modulus is
uncoupled from the other three moduli and thus can
be treated independently. The four constants appearing
in these relations are evaluated by using initial elastic
properties and their values at one crack spacing. Thus,
if the chosen crack spacing is s0, then

a1 ¼
1

2 �D0

Ex

1� �xy�yx
�

E0
x

1� �0xy�
0
yx

" #

a2 ¼
1

2 �D0

Ey

1� �xy�yx
�

E0
y

1� �0xy�
0
yx

" #

a3 ¼
1

2 �D0

Gxy � G0
xy

h i

a4 ¼
1

�D0

�xyEy

1� �xy�yx
�

�0xyE
0
y

1� �0xy�
0
yx

" #
ð20Þ

with �D0 ¼ �D
��
s¼s0
¼

�t2c
s0t
.
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Case 2: multiple damage modes. The details of damage
modeling in multidirectional laminates with
cracking in multiple off-axis plies are given in
References [19–21] and reproduced in Appendix A for
the sake of completeness. For the special case of [0m/
90r/��n]s and [0m/��n/90r]s laminates with intralaminar
cracks in þ�, �� and 90� layers, the stiffness-damage
relations are same as in equation (18) except that �D is
now given by18

�D ¼
2t20
t

1

s�n

��
��j�¼90

2 2nþ rð Þ
2�904nþ2r � r2�90

� �
þ r2

�90
s90

	 

ð21Þ

with the following constraint parameters

�� ¼
�u2
� �

��4n

4nt0
; �904nþ2r ¼

�u2
� �

904nþ2r

4nþ 2rð Þt0
; �90 ¼

�u2
� �

90r

rt0

ð22Þ

for [0m/90r/��n]s laminates, and

�D ¼
4t20
t

1

s�n

��
��j�¼90

2 2nþ rð Þ
2�904nþ2r � r2�90

� �
þ r2

�90
s90

	 

ð23Þ

with the following constraint parameters

�� ¼
�u2
� �

��2n

2nt0
; �904nþ2r ¼

�u2
� �

904nþ2r

4nþ 2rð Þt0
; �90 ¼

�u2
� �

902r

2rt0

ð24Þ

for [0m/��n/90r]s laminates, where t0 is the thickness of
a single ply, s�n, and s90 are the normal crack spacings in
�� and 90�-plies, respectively. In expressions for the
constraint parameters, the subscript denotes a particu-
lar damage mode (orientation of cracked plies) and
sub-subscript represents the number of cracked plies
corresponding to that damage mode.

The flow chart in Figure 1 describes the procedure
for multiscale synergistic methodology for multimode
damage assessment taking an example of [0m/��n/90r]s
laminates. Computational micromechanics involves
analysis of a representative unit cell to determine the

COD values and the constraint parameters. In a separ-
ate step, the material constants ai appearing in equa-
tions (18) and (20) are determined from experiments or
numerical simulations carried for a reference laminate,
specifically [0/903]s. These relations are then employed
to predict stiffness degradation with constraint param-
eters and material constants obtained from experiments
(or FE simulations) as inputs. In the final step, the
overall structural behavior in response to external load-
ing can be analyzed based on the degraded stiffness
properties for the damaged laminate.

A reference laminate in principle could be any cross-
ply laminate of a chosen configuration. The procedure
for predicting cracking-induced property changes for
other cross-ply laminates is independent of this
choice. The specific choice of [0/903]s laminate was
made here as experimental data for this laminate was
available from which the constrained parameter could
be estimated.

The procedure described above for determining elas-
tic moduli changes in a laminate requires calculating
CODs of ply cracks. However, the laminate elastic
moduli can change additionally due to the nonlinear
shear response of plies. In References [18,20] a proced-
ure for correcting the CDM predictions by including
this response was illustrated.

Modeling of damage evolution

For predicting evolution of ply cracking, the authors
have developed an energy-based approach, which is
capable of dealing with cracking in off-axis plies of
orthotropic laminates. In Reference [25], the approach
is described and applied to several ply cracking cases.
Here, we apply it to the relevant WWFE-III test cases.
A brief description of the approach follows.

As illustrated in Figure 4, two damage states are
considered: State 1 with N parallel off-axis cracks
spaced at distance s, and State 2 where the cracks
have multiplied to 2N and attained spacing s/2. The
crack density is assumed to increase when the work
required in going from State 1 to State 2 (which is the

Figure 4. Progressive multiplication of intralaminar cracks in an off-axis ply.
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same as work needed to close N cracks in going from
State 2 to State 1) exceeds a critical value, i.e., if

W2N!N � N:Gc
1

sin �
tc ð25Þ

where � is the off-axis angle shown in Figure 3 and Gc is
the critical (threshold) value of energy required for ply
crack formation within the given laminate (more dis-
cussion about this later). The work required to form
additional N cracks in going from State 1 to State 2
is therefore,

W2N!N ¼W2N!0 �WN!0 ð26Þ

where WN!0 and W2N!0 represent work required to
close N cracks in State 1, and 2N cracks in State 2,
respectively, and the two quantities are calculated as
(see Reference [21] for detailed derivation)

WN!0 ¼ N
1

sin �
ðtcÞ

2
�
1

E2
ð��20Þ

2: ~u�nðsÞ þ ��120
� �2

� ~u�nðsÞ
h i

ð27Þ

W2N!0 ¼ 2N
1

sin �
ðtcÞ

2:
1

E2
ð��20Þ: ~u

�
n

s

2

� �
þ ��120
� �2

� ~u�t
s

2

� �h i
ð28Þ

where ~u�n, ~u�t are the normalized average crack opening
and sliding displacements (COD and CSD). These are
given by

~u�n ¼
�u�n

tc �
�
20=E2

� � ¼ 1

t2c �
�
20=E2

� � Z t2=2

�tc=2

un zð Þdz

~u�t ¼
�u�t

tc �
�
120=E2

� � ¼ 1

t2c �
�
120=E2

� � Z t2=2

�tc=2

ut zð Þdz ð29Þ

where un and ut represent the relative opening and slid-
ing displacement of the cracked surfaces, respectively,
and overbars represent averages. For the special case of
cracking in 90�-ply only, the sliding displacement is
zero (under uniaxial loading condition) and hence the
criterion for ply multiplication is written as

tc
��20
� �
E2

2: ~u�n
s

2

� �
� ~u�nðsÞ

h i
� GIc ð30Þ

where GIc is the critical energy release rate in Mode I
(crack opening mode). This is the same relation as
derived for cracking in cross-ply laminates by Joffe
et al.26 except that they consider centrally placed
cracked 90�-plies in their model and normalize the aver-
age COD with half the ply thickness (tc/2). For cracking

in a general off-axis ply, one can use a multimode cri-
terion given as

wI

GIc

� �M

þ
wII

GIIc

� �N

� 1 ð31Þ

where

wI ¼
ð��20Þ

2

E2
2: ~u�n

s

2

� �
� ~u�nðsÞ

h i
;

wII ¼
ð��120Þ

2tc
E2

2: ~u�t
s

2

� �
� ~u�t ðsÞ

h i
ð32Þ

and GIIc is the critical energy release rate in Mode II
(crack sliding mode), and the exponents M and N
depend on the material system, for example, for glass/
epoxy M¼ 1, N¼ 2.35

In our work,25 we interpret the critical material par-
ameters GIC and GIIC not in the usual linear elastic
fracture mechanics sense where they are defined as the
resistance to advancement of the crack front at the
point of unstable crack growth. Instead, we postulate
that the work required to go from State 1 to State 2
involves a range of dissipative processes that all depend
on the material condition in a cracking ply within the
given laminate. The material parameter representing
the dissipated energy per unit of ply crack surface is,
therefore, not what is obtained in a standard fracture
toughness test for determining GIc or GIIc.
Furthermore, as discussed in Reference [25], we believe
a ply crack cannot form unless sufficient energy is avail-
able to open its surfaces (i.e. mode I). In other words, a
pure sliding action will not generate a set of parallel
cracks illustrated in Figure 4. This will imply that the
second term in equation (31) is negligible. In fact, we
report good predictions of crack density evolution by
only using the first term in equation (31). Also, we do
not use the conventional GIc but extract this value from
test data of a reference laminate and use it to make
predictions for other laminates. For the WWFE-III,
however, we are given conventional GIc and GIIc and
have used those. Thus, the predictions reported here
will not be in accordance with our analysis proposed
in Reference [25].

Analysis method

The prediction of overall stress–strain response for a
given damaged laminate using CDM entails following
steps:

1. Determine damage constants ai that appear in the
damage-stiffness relations (equation (18), using
equation (20)). This task requires stiffness constants
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for virgin (undamaged) laminate, E0
x, E

0
y, G

0
xy, v

0
xy,

and moduli of cracked laminates at some specified
crack spacing, s0 : Exðs0Þ, Eyðs0Þ, Gxyðs0Þ, vxyðs0Þ.
The moduli for virgin laminate are obtained through
the classical laminated plate theory (CLT) by using
the properties of a unidirectional lamina, whereas
their values at crack spacing s0 are obtained by
micromechanical analysis using finite element
method (FEM) for reference laminate [0/903]s. In
earlier works, e.g., References [18,20], these con-
stants were obtained using experimental data for
stiffness changes. It is noted here that the choice of
a reference laminate is driven by convenience and
availability of experimental data. Since in earlier
works18,20 the [0/903]s laminate was used to obtain
the material constants, the same laminate was then
used in later work as the reference laminate for FEM
calculations.

2. Find stiffness constants as a function of crack dens-
ity (�c¼ 1/s) using equation (18), depending on the
laminate type. This gives,

Cijkl ¼ f1 �cð Þ ð33Þ

3. Predict evolution of crack density as a function of
applied axial strain using the fracture criterion
expressed in equation (30). Thus,

�c ¼ f2 "ij
� �

ð34Þ

The strain to initiation of first multiple cracking
can be estimated by backward extrapolation of the
function f2.
4. Combine results from steps 2 and 3 (equations (33)–

(34)) to obtain stiffness properties as a function of
applied strain, equation (35), and predict the overall
stress–strain response of the laminate for axial ten-
sile loading along laminate longitudinal direction.

Cijkl ¼ cijkl "ij
� �

ð35Þ

Computational micromechanics (FE analysis). As described
above, SDM approach requires evaluation of COD
and damage constants, experimentally or computation-
ally. Since the BVP for multidirectional laminates is
inherently three-dimensional, we use 3D FE analysis
to compute these parameters. For the reference cross-
ply laminate, the representative unit cell is as shown in
Figure 5. For this laminate layup, periodic boundary
conditions are applied to the end faces in the transverse
(y) direction, and laminate symmetry about the mid-
plane is achieved by having out-of-plane displacements
(w) zero at the symmetry plane. Uniform displacement
is prescribed on the right face of the cell to have tensile
loading. However, for multidirectional laminates with
cracks in more than two orientations (e.g. multimode
cracking in [0/90/þ�/��] laminates), the construction of
FE model is somewhat complex and is detailed in
References [21,25]. For SDM predictions for laminates,
we chose [0/903]s, i.e. �¼ 90�, as a reference laminate.
The stiffness–damage results for this cross-ply laminate
can be obtained in a variety of ways. The most obvious
way would be by using experimental data. However,
although experiments reflect the real material behav-
iour, they can be performed for limited cases. An alter-
native and more general way is to use a numerical tool
such as an FE model to simulate stiffness degradation.
FE simulations are in fact easier to carry out and have
no scatter other than the accuracy of computations that
may depend on mesh density and implementation of
boundary conditions. The crack density along x direc-
tion (or equivalently, the crack spacing) was varied by
changing the length of the unit cell considered. Linear
elastic FE analyses were carried using ANSYS 1127 for
the reference laminate. The cracks were assumed to be
fully grown through thickness and width of 90�-plies.
The longitudinal modulus and the Poisson’s ratio of the
damaged laminate were obtained using the vol-
ume averaging28 of stresses and strains as given by

Figure 5. Representative unit cell for FE analysis of reference [0/903]s laminate. The applied displacement boundary conditions are

shown above. Periodic boundary conditions are applied on end faces in the width (y) direction.
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the following equations

Ex ¼
�xxh i

"xxh i
ð36Þ

�xy ¼ �
"yy

 �
"xxh i

ð37Þ

where brackets<> specify volume averaging. CODs
averaged over thickness of the cracked ply are calcu-
lated from

�u2 ¼
1

tc

Ztc=2
�tc=2

�u2 zð Þ dz ð38Þ

where �u2 ¼ uþ2 � u�2 represents the separation of
crack planes in the direction normal to the crack face
in the local lamina coordinate system x1, x2, x3 with x1
along crack longitude, x2 transverse to the crack and x3
along ply thickness. Numerically, �u2 is determined
from nodal x2-direction displacements averaged over
the entire crack surface. The above micromechanical
expressions are exact in the sense that they do not
involve any homogenization theory and are directly
calculated from FE data. Errors in the calculations
can be only due to approximation in FE analysis.
Further details on FE analysis methodology and valid-
ation for multidirectional laminates can be found in
References [20,21,25,29,30].

It should be pointed out here that we have not
included thermal stresses caused by cooling down of
the composite laminates to the room temperature.
However, it can be easily taken into account during
prediction of damage evolution by including thermal
stresses, which are calculated here by classical laminate
plate theory (CLT). We demonstrate the effect of ther-
mal stresses on one of the test cases: Test case 4. The
coefficient of thermal expansion is assumed to be con-
stant during entire loading process. Hence, we neglect
any change in thermal expansion brought about by ply
cracking.

Theoretical prediction of the WWFE-III

test cases

The SDM model, by itself, is limited to the prediction
of effect of sub-critical damage (matrix cracking, for the
present scenario) on the stiffness properties of the lami-
nated structure. Unlike the lamina failure theories, it
cannot predict the lamina or laminate failure. Hence,
our analysis here is limited to the test cases where effect
of damage on the stress–strain response is desired. The
test cases, thus analyzed are Test Case 3, Test Case 4,
Test Case 6, Test Case 7, Test Case 8, Test Case 12 and
Test Case 13. The input data for the analysis performed
here is taken from Reference [31].

In the first step, we carried out FE simulations to
characterize stiffness properties for reference laminate
[0/903]s for all material types. Thickness of a single ply
is taken as 0.125mm. The crack density for these cal-
culations in simulations was taken to be equal to 1.0 cr/
mm. Axial tensile loading along laminate longitude
was applied to the representative unit cell shown in
Figure 5. The changes are thus assumed to occur only
in Ex, and vxy, where as Ey and Gxy are assumed to be
impervious to damage for this laminate layup. The rela-
tive stiffness properties, constraint parameters, �D0, and
the corresponding damage constants for three material
systems, viz. Glass/epoxy1 (Glass/LY556), G4� 800/
5260 and IM7/8552 targeted in this study, are shown
in Table 1.

These constants were assumed to be the same for
different test cases as long as the ply material remains
the same. To evaluate the stiffness changes for various
test layups, the constraint parameters were obtained in
each case for crack density equal to 0.1 cr/mm (see
Tables 2 and 3 for calculated COD values for different
test cases). Then using expressions in equation (18),
stiffness properties for other laminates were obtained.
In doing so, it must be emphasized that since the
damage constants are laminate-dependent, they must
be adjusted in case the thickness of the cracked ply in
the laminate configuration changes, e.g., for Test

Table 1. Stiffness properties and constraint parameters for reference [0/903]s laminates made for different materials. The relative

stiffness changes are determined from FE simulations at crack density equal to 1 cr/mm, whereas the constraint parameters are

calculated at an assumed initial crack density equal of 0.1 cr/mm

Material type

Constraint

parameter, � �D0 Ex=E
0
x vxy=v

0
xy

Damage constants, ai (GPa)

a1 a2 a3 a4

Glass/epoxy1 (Glass/LY556) 7.61e-3 4.28e-3 0.631 0.457 �1070.8 �69.7 0 �594.7

G4-800/5260 5.65e-3 3.18e-3 0.898 0.483 �828.3 �25.3 0 �541.8

IM7/8552 5.78e-3 3.25e-3 0.903 0.478 �729.8 �22.6 0 �496.0
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Case 4: [0/904]s laminate,

a01 ¼ a1
ðC0

11Þ½0=904	s

C0
11

� �
½0=903	s

; a01 ¼ a2
ðC0

22Þ½0=904	s

C0
22

� �
½0=903	s

;

a03 ¼ a3
ðC0

66Þ½0=904	s

C0
66

� �
½0=903	s

; a04 ¼ a4
ðC0

12Þ½0=904	s

C0
12

� �
½0=903	s

ð39Þ

where a 0i represents re-evaluated constants for the
laminate in consideration and ai represents constants
for the reference laminate. Thus, the constants ais are
re-calculated every time the relative thickness of layers
in the laminate changes.

To simulate the stress–strain response, we need
damage evolution predictions. For this purpose, an

Table 2. Calculated average COD values for 90� cracking for selected test cases. All COD values are in mm

Crack density

(1/mm) Test Case 3 Test Case 4 Test Case 6 Test Case 7 Test Case 8

0.1 0.770 7.986 2.884 1.706 0.700

0.2 0.765 7.303 2.850 1.703 0.702

0.3 0.763 6.728 2.817 1.697 0.704

0.4 0.762 6.241 2.782 1.689 0.709

0.5 0.760 5.812 2.741 1.682 0.717

0.6 0.758 5.408 2.689 1.669 0.722

0.7 0.757 5.015 2.632 1.656 0.725

0.8 0.755 4.638 2.565 1.639 0.724

0.9 0.754 4.290 2.490 1.620 0.720

1.0 0.752 3.975 2.409 1.603 0.718

1.1 0.750 3.694 2.333 1.586 0.715

1.2 0.748 3.443 2.248 1.566 0.711

1.3 0.747 3.222 2.171 1.551 0.711

1.4 0.746 3.023 2.094 1.529 0.706

1.5 0.743 2.848 2.013 1.511 0.706

1.6 0.742 2.690 1.941 1.487 0.701

1.7 0.741 2.550 1.871 1.466 0.701

1.8 0.739 2.423 1.804 1.439 0.695

1.9 0.736 2.308 1.741 1.418 0.695

2.0 0.733 2.202 1.675 1.395 0.695

COD: crack opening displacement.

Table 3. Calculated average COD values for 90� cracking for Test Cases 12 and 13. All COD values are in mm

Crack density

(1/mm) Test Case 12

Test Case 13,

m¼ 1

Test Case 13,

m¼ 2

Test Case 13,

m¼ 3

0.2 3.223 0.770 1.680 2.424

0.4 2.982 0.739 1.611 2.330

0.6 2.832 0.712 1.553 2.204

0.8 2.686 0.683 1.491 2.124

1.0 2.531 0.664 1.448 2.051

1.2 2.381 0.649 1.416 1.967

1.4 2.209 0.633 1.381 1.872

1.6 2.059 0.615 1.343 1.786

1.8 1.917 0.601 1.311 1.686

2.0 1.731 0.580 1.266 1.600

COD: crack opening displacement.
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energy-based fracture criterion given in equation (30)
was utilized in a MATLAB code. The normalized aver-
age COD and CSD for different crack spacing were
obtained using FE simulations on the representative
unit cell for the respective laminate. For 90� cracking,
the calculated COD values are tabulated in Table 2
(CSD¼ 0 for 90�-cracks). Polynomial fits to these

COD values were used in the simulation for damage
evolution. The damage evolution subroutine was run
until the applied strain reaches longitudinal failure
strain in tension. If the calculated crack initiation
strain comes out to be higher than the longitudinal fail-
ure strain, the laminate is understood to have failed by
fibre fractures.

Figure 7. Stress–strain response and crack density evolution for Test Case 3: [0/90/0]T glass/epoxy1 laminate. No thermal effects

were taken into account.

Figure 6. Stiffness and Poisson’s ratio degradation for Test Case 3: [0/90/0]T glass/epoxy1 laminate.
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For stiffness changes, the damage model considered
in the present study is a linear model with respect to the
crack density. A nonlinear model will involve add-
itional damage constants and would be required to
achieve a better accuracy for high crack density. For
present purpose of illustration, a linear approach is
sufficient.

Test Case 3. For this test case, Figure 6 shows the var-
iation of longitudinal Young’s modulus and the
Poisson’s ratio normalized with initial values

�
Ex

E0
x
,
�xy
�0xy

�
against the normalized crack density (�90t90). The evo-
lution of crack density and corresponding stress–strain
response are shown in Figure 7. For this laminate case,
the ply cracks initiate in 90�-plies at an applied axial
strain of about 1.2%. After initiation, cracks grow in
number very quickly on increase in applied strain and
reach a saturation level subsequently. The overall shape
of crack density increase is parabolic. The value of
�90t90 reached at longitudinal tensile failure strain
("1T ¼ 2:807%) for this material is slightly more than
1.0, suggesting a very high value of absolute crack den-
sity (
8 cracks/mm). Still the effect on stress–strain
response is not too severe as would be for thicker
90�-plies (such as in the next Test Case). Although
the Poisson’s ratio reduces, its effect on the transverse
stress–strain curve (�x vs. "y) is almost negligible.

Test Case 4. For this test case, the laminate material is
same as in the previous one. However, the thickness of
the 90�-plies is eight times of that in the previous case.
Consequently, the degradation in the laminate stiffness
due to ply cracking is much more severe in the present

case (see Figure 8). Also, the ply cracks in 90�-plies
initiate at much lower applied strain of about 0.37%.
As compared to the Test Case 3, however, the rate of
damage evolution is lower in this case and the value of
�90t90 reached at "x ¼ "1T for this material is 0.66, sug-
gesting much lower absolute crack density (0.66 cracks/
mm). The shape of the damage evolution curve is quite
similar to that in Test Case 3 (Figure 9). The stress–
strain response (also in Figure 9) is significantly non-
linear after ply cracking. For thicker cracked plies,
thus, ply cracking may cause severe nonlinearity in
the longitudinal stress–strain response. Although there
is large reduction in the Poisson’s ratio subsequent to
ply cracking, its effect on the transverse stress–strain
curve (�x vs: "y) is not visible.

Here, we also illustrate the effect of thermal residual
stresses on ply cracking and the resultant stress–strain
response. Due to differential thermal expansion of long-
itudinal and transverse plies, the inner 90�-ply will
develop compressive thermal residual strains when it
is cooled from curing to the room temperature. The
residual thermal strains due to thermal effects during
curing are calculated using CLT as32

"th ¼
t0E1

t0E1 þ t90E2
�2 � �1
� �

�T

¼
45:6

4 � 16:2þ 45:6
� 26:4� 8:6ð Þ � 10�6 � 120� 25ð Þ

¼ 6:98 � 10�4 � 0:07%

ð40Þ

where t0 is 0� ply thickness, and �T ¼ Tref � Tservice

with Tservice¼ 25�C being the service (room)

Figure 8. Stiffness and Poisson’s ratio degradation for Test Case 4 [0/908/0]T glass/epoxy1 laminate.
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temperature, Tref¼ 120�C being the curing (stress free)
temperature. The crack initiation strain thus decreases
by 0.07% from the earlier value obtained without con-
sidering thermal effects. The rate of damage progres-
sion is however independent of thermal residual
stresses. Thus, the new damage evolution curve just
gets shifted to the left of the curve without such effects
by an amount equal to thermal residual strain. The
stress–strain response is also affected as shown in
Figure 9 by dashed lines (using second subscript t in
legend). Thermal effects are observed to be small for
transverse stress–strain response.

Test Case 6. For multidirectional laminates, the damage
will form in multiple plies of different orientations. For
the specific case of quasi-isotropic laminates considered
here in Test Cases 6–8, the cracks may form in 90�,
þ45� and �45� layers. The combined effect of these
cracks is felt more severely on the overall stiffness prop-
erties. Although most of stiffness degradation comes
from 90� cracks, �45� cracks may interact with 90�

cracks and cause more severe degradation than what
would be observed if cracks in these different damage
modes occurred without affecting each other. SDM
model is capable of dealing with this multimode
damage scenario, as depicted by stiffness-damage rela-
tionships with �D described in equations (21)–(24).
Obviously, the density and opening displacements of
intralaminar cracks in a given layer will depend on

the material, orientation and the thickness of that ply
and also on the relative constraint on the cracked ply
from surrounding supporting plies. For oblique cracks,
sliding of the cracked surfaces will also play a role in
the cracking criterion according to equation (31). It is
often observed in experiments, for example Reference
[30], that �45� cracks may not grow fully before the
laminate fails by delamination, and therefore we will
assume �45� cracks are half-developed, i.e. while eval-
uating stiffness properties we will reduce the total crack
density �45� such that the effective crack density in
these plies is given by �45ð Þeff¼ �r�45; �r ¼ 0:5. More
detailed information about the growth of cracks is
necessary to model this behaviour. This relative density
is chosen for illustration purpose only and is based on
our experience with model’s usage to predict stiffness
degradation in quasi-isotropic laminates21 for experi-
mental data on quasi-isotropic laminates reported in
Reference [33]. The respective crack densities in differ-
ent cracked plies are obtained using the damage pro-
gression model. Actual experimental observations may
be necessary to simulate real material behaviour more
accurately. The resulting plots for longitudinal Young’s
modulus and Poisson’s ratio for Test Cases 6, predicted
using expressions in equations (18) and (21), are shown
in Figure 10. The constraint parameters for �45� crack-
ing with respect to that for 90� cracking are calculated
using the parametric equation developed for COD var-
iation with respect to ply orientation in Reference [20]

Figure 9. Stress–strain response and crack density evolution for Test Case 4: [0/908/0]T glass/epoxy1 laminate. Dashed lines

(denoted in legend by second subscript t) include the effect of strains generated due to thermal mismatch between 0� and 90�-plies

during curing on damage initiation and progression.
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considering cracking in �� cracking in [0/��/01/2]s
Glass/epoxy1 laminates:

�u2
� �

�
¼ �u2
� �

90
sin2 � ð41Þ

Also, it is assumed that �904nþ2r ¼ �90
and ��j�¼90¼ �90. It is noted that the above equation
may not be accurate when cracks in multiple off-axis
orientations are present with different crack densities.
A more detailed FE computation with experimentally
observed crack densities is warranted in such a case.

The COD variation in �45� plies is assumed following
equation (41). As a simplification, the cracking in both
�45� plies is assumed to initiate at identical applied
strain and progress with same rate, although experi-
ments may suggest that the 45� ply that is adjacent to
90� ply may fail earlier.33 In Figure 10, we first show the
variation of laminate stiffnesses with respect to crack
density in 90� ply. Because at higher applied strains
cracks are present in all off-axis orientations,
Figure 10(b) is more appropriate, which shows their
variation with respect to the applied strain. The
damage progression in all off-axis plies is shown in

Figure 10. Variation of longitudinal Young’s modulus and Poisson’s ratio: (a) vs. normalized crack density in 90� ply and (b) vs. applied

strain for Test Case 6: [0/90/–45/þ45]s glass/epoxy1 laminate. Cracks in all off-axis modes are accounted depending on their

respective initiation strains and variation of crack densities with applied strain as shown in the next figure. No thermal effects were

taken into account.
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Figure 11. The cracks initiate in 90� ply at about 0.62%
axial strain, and in �45� plies at about 1.25% axial
strain. Initial stiffness degradation ("x 4 0:62%) occurs
due to 90� cracks only, whereas later ("x4 1:25%) 45�

cracks also contribute to stiffness degradation. The evo-
lution curves for normalized crack densities in 95� and
45� plies have similar shapes, with saturation levels of
�90t90 � 0:72; �45t45 � 0:6. No thermal effects were

considered while predicting damage progression and
resultant stiffness properties.

As a result of ply cracking in multiple orientations,
the stiffness degradation is more severe than would be
for cracking in 90�-plies only. As reported in Reference
[33], cracks in �45� plies will typically form from 45/90
interfaces and tend to further enhance opening of
cracks present in 90�-plies. This increases the rate of

Figure 11. Stress–strain response and crack density evolution for Test Case 6: [0/90/–45/þ45]s glass/epoxy1 laminate with cracks in

all off-axis modes. The crack initiation and the crack density evolution in both 45� plies are assumed to be identical. No thermal effects

were taken into account.

Figure 12. Stiffness and Poisson’s ratio degradation for Test Case 7: [0/–45/þ45/90]s G4� 800/5200 laminate.
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damage evolution as well as corresponding degradation
in stiffness properties and is not accounted for here.
Some nonlinearity is observed in longitudinal and
transverse stress–strain curves (Figure 11).

Test Case 7. For this ply material, we observed that our
FE calculations on reference laminate [0/903]s showed
very small relative degradation in Ex but significant
degradation in vxy (see Table 1). The COD, hence the
constraint parameter, was also calculated to be smaller
with this material. Therefore, the changes in longitudi-
nal Young’s modulus are less pronounced for laminate
with this material than Glass/epoxy1. Figure 12 shows
the predicted changes in stiffness properties for this
case. The corresponding stress–strain response along
with crack density evolution is shown in Figure 13.

For laminates made from G4-800/5260 material,
thermal residual stresses generated during curing were
found to affect the damage initiation behaviour signifi-
cantly. For the present layup [0/�45/þ45/90]s, the mis-
match in axial thermal strains between the 45� and the
90�-plies during curing is calculated as 0.311%. This
decreases the crack initiation strain in 90�-plies to
about 0.9% (Figure 13). The model does not predict
any cracking in 45� plies. The shape of crack density
evolution is about the same as before with maximum
normalized crack density in 90�-plies at about 0.6 at
"x ¼ "1T. Appreciable nonlinearity is seen in stress–
strain responses, especially the transverse stress–strain
response.

Test Case 8. When only mechanical strains were consid-
ered, our model did not predict any cracking for this
laminate (i.e. crack initiation strain for this case was
determined to be greater than the provided failure
strain for unidirectional lamina). However, when we
include residual thermal strains, the cracking in 90�-
plies is predicted. The reduction in the longitudinal
stiffness and Poisson’s ratio is predicted to be similar
to Test Case 7 (Figure 14) when absolute crack densities
are considered. However, the crack initiation and pro-
gression behaviour (Figure 15) is quite different mainly
due to different thicknesses of 90�-plies in the two test
cases. For the present case, the mismatch between 0�

and 90�-plies is important, which is calculated as
0.622%. This decreases the crack initiation strain to
about 1.3% in 90�-plies. Cracks do not form in 45�-
plies. The normalized crack density is found to rise
quickly and the maximum normalized crack density
at "x ¼ "1T is predicted to be about 0.15, much smaller
than that in the Test Case 7. Some nonlinearity in
stress–strain responses due to cracking is observed.

Test Case 12 and 13. Although these test cases are meant
for compressive and tensile strength of the quasi-isotro-
pic laminates in the presence of hole, we do not attempt
full analysis and prediction here since that would
require detailed structural stress analysis. However,
we illustrate how SDM model could be applied to lami-
nate cases where ply thickness varies. For given ply
layup [45m/90m/�45m/0m]s in Test Case 13, we vary m

Figure 13. Stress–strain response and crack density evolution for Test Case 7: [0/–45/þ45/90]s G4� 800/5200 laminate with cracks

in 90�-plies only. Strains generated due to thermal mismatch between 45�- and 90�-plies during curing were taken into account while

evaluating damage initiation and progression.
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from 1 to 4 with m¼ 4 equivalent to the Test Case 12.
Cracking in only 90�-plies is assumed and the analysis
neglects any damage in the �45� and 0� plies. If there is
significant cracking in 45� plies, the COD calculations
(FE model) as well as stiffness predictions must account
for cracks in these off-axis plies also, as was illustrated
before in case of Test Case 7.

Since the ply sequence and relative thickness of
cracked and constrained plies remains the same, the

relative stiffness change will be given by the ratio of
constraint parameters, i.e. � ¼ �=�0, where �0 is the
constraint parameter obtained for the reference lami-
nate [0/903]s. � is calculated to be 0.5565,0.5523, 0.5478
and 0.5585, respectively, for m¼ 1 to 4. Thus, the stiff-
ness degradation should be the same in all laminates
because their relative thickness is the same; the slight
difference may be due to different mesh densities and
inaccuracies in COD calculations. The ratio of

Figure 15. Stress–strain response and crack density evolution for Test Case 8: [45/0/90/�45]s G4� 800/5200 laminate with cracks

in 90�-plies only. Strains generated due to thermal mismatch between 0�- and 90�-plies during curing were taken into account while

evaluating damage initiation and progression.

Figure 14. Stiffness and Poisson’s ratio degradation for Test Case 8: [45/0/90/�45]s G4� 800/5200 laminate.
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degraded to original longitudinal modulus and
Poisson’s ratio for m¼ 4 (Test Case 12) is shown in
Figure 16. However, the change in thickness has a sig-
nificant effect on crack initiation and progression. The
crack initiation strain decreases as the cracked ply
thickness increases. The rate of damage progression is

higher for lower m. For a ply thickness of 0.125mm
(m¼ 1), crack initiation strain was calculated to be
1.79%, which is greater than the longitudinal tensile
failure strain ("1T¼ 1.551%) for the UD lamina with
this material. Thus, for this value of m and the provided
GIc value, our model predicts no ply cracking before

Figure 17. Stress–strain response and crack density evolution for Test Case 12: [45/90/�45/0]s IM7/8552 laminate with cracks in

90�-plies only. No thermal effects were taken into account.

Figure 16. Stiffness and Poisson’s ratio degradation for Test Case 12: [45/90/�45/0]s IM7/8552 laminate. For Test Case 13, [45m/

90m/–45m/0m]s laminate, with different m values, the stiffness reduction is about the same because relative thickness of cracked and

constraining plies remains constant. Cracking only in 90�-plies is assumed.
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laminate fails in tension by fibre fracture. For other
thickness cases, the crack initiation strains for 90�-ply
cracking are calculated to be 1.25%, 1.0% and 0.8%,
respectively, for increasing m from 2 to 4. The normal-
ized crack density �90t90 at "x ¼ "1T is observed to be in
the neighbourhood of 0.6 for different thickness values.
For thinner 90�-plies, �90t90 tends to reach a higher
value.

For higher m values, the degradation in the
Poisson’s ratio is observed to be more pronounced
than the degradation observed in the longitudinal
Young’s modulus, probably due to a very high long-
itudinal stiffness of the material. This was also observed
earlier for G4-800/5260 material, as illustrated in Test
Case 7. For Test Cases 12 and 13, this can be seen
from the transverse stress–strain curves, shown

Figure 18. Stress–strain response and crack density evolution for Test Case 13: [45m/90m/�45m/0m]s IM7/8552 laminate, m¼ 2, with

cracks in 90�-plies only. No thermal effects were taken into account.

Figure 19. Stress–strain response and crack density evolution for Test Case 13: [45m/90m/�45m/0m]s IM7/8552 laminate, m¼ 3, with

cracks in 90�-plies only. No thermal effects were taken into account.
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in Figure 17–19, for m¼ 4, m¼ 2 and m¼ 3, respec-
tively. The stress–strain curves show larger nonlinearity
for lower m.

It is noteworthy here that the strain at which the
initiation of damage in the 90� plies takes place
decreases with increasing the thickness of the ply (i.e.
increasing the value of ‘m’) even when the relative
thicknesses of different plies remains the same. This
appears to be in a stark contrast to what strength-
based failure model would predict. A strength-based
model would predict the strain to be the same as long
as the thickness of all the plies (45�, 90�, �45� and 0�

plies) increases by the same amount. The variation of
crack initiation strain with increasing m depends on
change in average COD and CSD and cracked ply
thickness. Since COD varies linearly with the crack
size (or the cracked ply thickness), the normalized aver-
age COD is same for different m values. Therefore,
the cracking criterion in equation (30) suggests
ð"Þinit 
 1=

ffiffiffiffi
m
p

. In our analysis, we have used COD
values computed from FE analysis and is therefore
thought to be more accurate. For large value of m, it
is expected that the crack initiation strain may decrease
to a small value, but the rate of decrease is asymptotic.
For instance, if m¼ 10, a linear variation (
1/m law)
suggests ð"xÞinit � 0:25% and ð"Þinit 
 1=

ffiffiffiffi
m
p

suggests
"xð Þinit� 0:56%. Therefore, even for large m, ð"xÞinit is
not expected to reach zero value. Moreover, for high
values of m, cracks in 90� plies actually trigger initiation
of cracks in neighbouring 45� plies due to high crack tip
stresses. In fact, experiments have shown that in a
quasi-isotropic laminate of [0/90/�45/45]s sequence,
cracks in 90� plies triggered cracks in neighbouring
45� ply from 0/90 interface.

Discussion

The SDM methodology summarized above has been
illustrated by taking some of the Test Cases specified
in WWFE-III. The test cases and the input data have
been devised for a wide range of models and are there-
fore not all suited to test the SDM predictions. These
predictions are concerning initiation and progression of
ply cracking in laminates and the consequent changes
in the laminate elastic response. The inputs needed for
calculating the initiation and progression of ply crack-
ing consist of the ply elastic constants and failure prop-
erties. The conventional failure properties used in
literature are normal and shear strengths as well as
fracture toughness values in crack opening and shear-
ing modes. Our approach uses none of these but instead
deduces work of fracture values from crack progression
data for a reference laminate. Since this was not feasible
for the test cases, we used the fracture toughness data.
For laminate stiffness predictions due to ply cracking,

the input data needed are ply elastic constants. The
additional laminate-dependent constants needed are
calculated either from test data or from FE models of
representative unit cells. Of particular significance
among these constants are constraint parameters that
characterize surface displacements of ply cracks.

The test cases chosen have been with regard to the
linear elastic response changes due to multiple ply
cracks in multiple orientations. It is known that the
shear stress–strain response of a ply (unidirectional
composite) is nonlinear. Part of this nonlinearity can
be attributed to the resin shear deformation while
another part could come from shear-induced ply
damage. In previous works, these aspects have been
treated.18,20 Since additional input needed for this treat-
ment was not available, we have not applied it to the
test cases here.

As a matter of general interest to damage analysis, it
is noted that the elastic moduli corresponding to a
given state of damage must be obtained from slopes
of the unloading part of the stress–strain response.
During unloading, the state of damage is constant
and the strain response is reflective of the surface dis-
placements of the ply cracks and is unaffected by any
inelastic deformation that may have occurred during
loading.

It is further noted that the linearized version of the
stiffness-damage relationships used here makes it pos-
sible to calculate stiffness changes by adding the effects
of individual damage modes (ply cracks in different
orientations). Thus, as long as the state of damage is
determined by a damage evolution analysis, the conse-
quent stiffness changes can be calculated by superposi-
tion. The global loading on the laminate can be uniaxial
or biaxial, it would not matter, as the resulting in-plane
stress state in a cracking ply would in all cases govern
the formation and multiplication of cracks. The criter-
ion for multiple cracking used here is, however, not the
critical stress state (‘‘strength’’), but the work required
to open (i.e. form) ply cracks in the presence of pre-
existing cracks.

Finally, it is noted that the SDM methodology is not
for failure prediction in the sense of loss of load-bearing
capability. It is for estimating the loss of stiffness
(deformational resistance). For composite structures
where reduced capacity to resist deformation is unde-
sirable, the loss of stiffness can be equated to failure.

Conclusions

In this paper we, have briefly summarized the SDM
methodology developed in previous works to evaluate
effect on stiffness properties of ply cracking in multi-
directional composite laminates. This multiscale meth-
odology overcomes the limitations of the traditional
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CDM formulation by application of appropriate
constraint parameters that are obtained through com-
putational micromechanics (using FEM). The required-
damage related constants in the formulation for general
laminates can be evaluated from data for a reference
laminate, obtained from experimentation or from inde-
pendent numerical calculations. The SDM formulation
is thus quite suitable for design of composite laminates
in the industry and can be easily coded into a commer-
cial FE package.

Among the test cases specified in the present failure
exercise, we have selected those that are suited for illus-
trating the SDM methodology. This methodology eval-
uates stiffness changes for given damage states (ply
cracking densities) and for a complete description of
laminate stress–strain response the evolution of
damage states must be additionally determined. This
is illustrated for the selected test cases by applying a
recently developed damage evolution theory by the
authors.25 It is noted, however, that the laminate mate-
rial constant (critical work of multiple cracking) needed
in that theory requires its determination from damage
evolution data. Since that was not possible here, we
have instead used the fracture toughness provided in
the failure exercise.

It is worth pointing out that the predictions from the
present theory have been compared with those obtained
from other 11 models, employed in the WWFE-III, in
Reference [34]. Furthermore, a comparison between the
model’s predictions and experimental results will be
made in Part B of the WWFE-III, planned as a special
issue of J Compos Materials.
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Appendix A

Stiffness-damage relations for cracked laminate with
two and three damage modes

Let us consider a case where two modes of damage
are active. The irreducible integrity bases for  are then
given by

"11, "22, "33, "
2
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2
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For a thin laminate loaded in its plane, the above set
can be reduced by considering only the in-plane strain
and damage tensor components. Thus, the remaining
integrity bases in the Voigt notation are given by

"1, "2, "
2
6

D
ð1Þ
1 ,D

ð1Þ
2 , D

ð1Þ
6

� �2
,D
ð2Þ
1 ,D

ð2Þ
2 , D

ð2Þ
6

� �2
"6D

ð1Þ
6 , "6D

ð2Þ
6 ðA:2Þ

Using the above set of integrity bases, the most gen-
eral polynomial form for � , restricted to second-order
terms in the strain components (assuming small strains)
and first-order terms in damage tensor components
(assuming small volume fraction of damage entities in
the RVE), is given by

�m ¼ P0 þ c1"
2
1 þ c2"

2
2 þ c3"

2
6 þ c4"1"2
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þ "21 c5D
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where P0 and ci, i¼ 1,2, ... , 24 are material constants,
P1 and P2 are linear functions of strain and damage
tensor components and P3 and P4 are linear functions
only of the damage tensor components. Setting
�m ¼ 0 for unstrained and undamaged material, we
have P0¼ 0; and assuming the unstrained material of
any damaged state to be stress-free, we get P1 ¼ P2 ¼ 0
on using equation (12). Considering the virgin material
to be orthotropic and proceeding in a similar manner as
above, we obtain following relations for stiffness matrix
of the damaged laminate

Cpq¼ C0
pqþC

ð1Þ
pq þ Cð2Þpq ðA:4Þ

where p, q¼ 1,2,6; C0
pqis the stiffness coefficient matrix

of the virgin laminate given by (14), and the changes in
stiffness brought about by the individual damage
modes are represented by Cð1Þpq and Cð2Þpq, which are
given by

Let us now consider a special case of a general lami-
nate undergoing damage in two symmetrically placed
damage modes, such as 0m=� �n=’p

� �
s
, with ’ restricted

to angles that do not cause ply cracking. In such lami-
nates, an in-plane tensile loading will produce an in-
plane stress state in each off-axis ply consisting of
normal stresses along and perpendicular to fibres in
that ply and a shear stress in the plane of the ply.
Depending on the values of �, ’ and ply properties,
the stress perpendicular to the fibres could be tensile
or compressive. Thus, on loading, an off-axis ply may
or may not develop intralaminar cracks. When �¼ 90�,
the matrix will undergo multiple cracking in the trans-
verse plies. For other cases of off-axis ply orientations,
multiple cracking is typically observed to occur for
angles from 50� to 90�. However, it has been observed
that even in cases where these cracks do not initiate in
the off-axis plies, the laminate moduli change with the
applied load due to shear stress-induced damage within

the plies. This material nonlinearity due to shear beha-
viour has to be taken into account separately while
predicting shear modulus degradation. The procedure
is reported in Reference [18].

The damage state subsequent to ply cracking in þ�
and �� plies can be represented by two damage mode
tensors. For off-axis ply cracking, it is more convenient
to rewrite the damage mode tensor defined in equation
(4) in terms of normal crack spacing, s�n ¼ s� sin �,
where s� is the crack spacing in the axial direction
(see Figure 20) for the ply of orientation �.
Accordingly, the damage mode tensors are given by

D
ð�Þ
ij ¼

�t2c
s�nt

ninj ðA:6Þ

With reference to Figure 20(b) where the orienta-
tions of the two damage modes are shown, the elements

of the damage mode tensor are given by
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where the superscripts �þ and �� indicate variables for
þ� and �� plies, respectively. Assuming that the

Cð1Þpq¼

2c5D
ð1Þ
1 þ 2c6D

ð1Þ
2 c17D

ð1Þ
1 þ c18D

ð1Þ
2 c21D

ð1Þ
6

2c9D
ð1Þ
1 þ 2c10D

ð1Þ
2 c23D

ð1Þ
6

Symm 2c13D
ð1Þ
1 þ 2c14D

ð1Þ
2

2
6664

3
7775

Cð2Þpq¼

2c7D
ð2Þ
1 þ 2c8D

ð2Þ
2 c19D

ð2Þ
1 þ c20D

ð2Þ
2 c22D

ð2Þ
6

2c11D
ð2Þ
1 þ 2c12D

ð2Þ
2 c24D

ð2Þ
6

Symm 2c15D
ð2Þ
1 þ 2c16D

ð2Þ
2

2
6664

3
7775

ðA:5Þ
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intensity and distribution of damage is same in �þand �-

plies, we have

��
þ

¼ ��
�

¼ ��; s�
þ

n ¼ s�
�

n ¼ s�n ðA:8Þ

Substituting (A.8) into (A.5), we obtain

C
ð1Þ
11 þ C

ð2Þ
11 ¼ 2

��t
2
c

s�nt
c5 þ c7ð Þ sin2 � þ c6 þ c8ð Þ cos2 �

� �
C
ð1Þ
22 þ C

ð2Þ
22 ¼ 2

��t
2
c

s�nt
c9 þ c11ð Þ sin2 � þ c10 þ c12ð Þ cos2 �

� �
C
ð1Þ
66 þ C

ð2Þ
66 ¼ 2

��t
2
c

s�nt
c13 þ c15ð Þ sin2 � þ c14 þ c16ð Þ cos2 �

� �
C
ð1Þ
12 þ C

ð2Þ
12 ¼

��t
2
c

s�nt
c17 þ c19ð Þ sin2 � þ c18 þ c20ð Þ cos2 �

� �
C
ð1Þ
16 þ C

ð2Þ
16 ¼

��t
2
c

s�nt
sin � cos � �c21 þ c22½ 	 ¼ 0

C
ð1Þ
26 þ C

ð2Þ
26 ¼

��t
2
c

s�nt
sin � cos � �c23 þ c24½ 	 ¼ 0

ðA:9Þ

Thus,

Cð1Þpq þC
ð2Þ
pq¼

2a1D1þ2b1D2 a4D1þb4D2 0

2a2D1þ2b2D2 0

Symm 2a3D1þ2b3D2

2
66664

3
77775

ðA:10Þ

where the superscripts for denoting damage mode have
been dropped for convenience, and ai and bi; i¼ 1,2,3,4
are the two sets of four material constants, given by

a1 ¼ c5 þ c7, a2 ¼ c9 þ c11, a3 ¼ c13 þ c15,

a4 ¼ c17 þ c19;

b1 ¼ c6 þ c8, b2 ¼ c10 þ c12, b3 ¼ c14 þ c16,

b4 ¼ c18 þ c20

ðA:11Þ

Here, ai and bi are functions of �. Denote,

a1 �ð Þ ¼ a1 sin
2 � þ b1 cos

2 �,

a2 �ð Þ ¼ a2 sin
2 � þ b2 cos

2 �,

a3 �ð Þ ¼ a3 sin
2 � þ b3 cos

2 �,

a4 �ð Þ ¼ a4 sin
2 � þ b4 cos

2 �

ðA:12Þ

Then,

Cð1Þpq þ Cð2Þpq¼D�

2a1 �ð Þ a4 �ð Þ 0

2a2 �ð Þ 0

Symm 2a3 �ð Þ

2
6664

3
7775 ðA:13Þ

where

D� ¼
��t

2
c

s�nt
ðA:14Þ

Rewriting (A.12) as

ai �ð Þ ¼ ai sin
2 � þ bi cos

2 � ¼ ai sin
2 � 1þ

bi
ai
cot2 �

� �
ðA:15Þ

Consider for the moment the case when ai � bi.
Then,

bi
ai
cot2 � � 1 for

	

4
� � �

	

2
ðA:16Þ

Also, it can be expected that

bi
ai
cot2 � 
 1 for

	

3
� � �

	

2

i:e:, ai �ð Þ � ai for
	

3
� � �

	

2

ðA:17Þ

Figure 20. Damage characterization for two-damage modes.

X1, Y1, Z1 here refer to the global coordinate axes

(same as x, y, z).
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For this case, we have laminate stiffness matrix as

Cpq¼

E0
x

1� �0xy�
0
yx

�0xyE
0
y

1� �0xy�
0
yx

0

E0
y

1� �0xy�
0
yx

0

Symm G0
xy

2
66666664

3
77777775

þD�

2a1 a4 0

2a2 0

Symm 2a3

2
64

3
75 ðA:18Þ

which is of identical form to the expression for 90�

cracking in a cross-ply laminate, see equation (16).
Hence, the stiffness matrix of a laminate with cracking
in two symmetric damage modes is quite similar in form
to that of a cracked cross-ply laminate.

We will now consider a special case of cracking in
three off-axis plies, of which two are symmetrically
opposite of each other, and the third one is placed
along the transverse direction. Thus cracking is in þ�,
�� and 90� plies. For this case, the stiffness matrix of
the damaged laminate is given by

Cpq¼ C0
pqþC

ð1Þ
pq þ Cð2Þpq þ Cð3Þpq ðA:19Þ

C ð1Þpq þ C ð2Þpq are already known from earlier discus-
sion. The components of third damage mode (�¼ 3)
corresponding to cracking in 90� ply are

D
ð3Þ
1 ¼

�90t
2
90

s90t
, D
ð3Þ
2 ¼ D

ð3Þ
6 ¼ 0 ðA:20Þ

The integrity bases (A.2) has additional components
for D

ð3Þ
1 . The free energy function thus gets the follow-

ing terms added to (A.3)

� � ¼ 3ð Þ ¼ a01"
2
1D
ð3Þ
1 þ a02"

2
2D
ð3Þ
1 þ a03"

2
6D
ð3Þ
1 þ a04"1"2D

ð3Þ
1

ðA:21Þ

where a
0

i, i ¼ 1, 2, 3, 4 are additional material constants.
Putting (A.21) into (12), we obtain

Cð3Þpq¼D
ð3Þ
1

2a01 a04 0
2a02 0

Symm 2a03

2
4

3
5 ðA:22Þ

where contribution to the shear components is zero.
It is important to emphasize here that the relative

location of different damage modes in the whole lami-
nate will cause different loss in stiffness due to damage
in the laminate. To illustrate this let us consider two
specific examples of laminates with damage modes con-
sidered in the present section, viz., þ�, �� and 90�:

laminates with [0m/��n/90r]s and [0m/90r/��n]s config-
urations, respectively.

Considering first the case of [0m/��n/90r]s laminate,
we note that �� modes occur twice in the whole lami-
nate, above and below the mid-plane of the laminate,
whereas 90� mode occurs only once. Thus,
�Cpq¼ Cpq � C0

pq ¼
PN

�¼1 C
ð�Þ
pq is given by

�Cpq ¼ 2 Cð1Þpq þ�ð Þ þ Cð2Þpq ��ð Þ
n o

þ Cð3Þpq 90ð Þ ðA:23Þ

Collecting terms from equation (A.18) and equation
(A.22) while assuming ais to be independent of �, we get

�Cpq ¼ 2D�

2a1 a4 0

2a2 0

Symm 2a3

2
64

3
75

þD90

2a01 a04 0

2a02 0

Symm 2a03

2
64

3
75

ðA:24Þ

where, for the laminate configuration considered,

D� ¼
�� 2nt0ð Þ

2

s�nt
; D90 ¼

�90 2rt0ð Þ
2

s90t
ðA:25Þ

where to denotes the thickness of a single ply. In the
special case when �¼ 90�, �Cpq as given by (A.24)
should be equal to that given by a single 90� mode
with crack size of (4nþ 2r) plies. Consider for example
�C11 term. If we assume that the normal crack spacing
is the same in all cracked plies, then �C11 for [0m/��n/
90r]s laminate at �¼ 90� from (A.24) is given by

�C11 ¼ 2 C
ð1Þ
11 þ C

ð2Þ
11

n o
þ C

ð3Þ
11 ¼ 4D�j�¼90a1 90ð Þ þ 2D90a

0
1

¼
4��j�¼90 2nt0ð Þ

2

s90t
a1 þ

2�90 2rt0ð Þ
2

s90t

a01 ¼
8t20
s90t

2n2��j�¼90a1 90ð Þ þ r2�90a
0
1

� �
ðA:26Þ

Since for �¼ 90�, [0m/��n/90r]s is equivalent to [0/
902nþ r]s, we can consider their stiffness changes to be
the same. Thus,�C11can also be written, using (16), as

�C11 ¼ C
ð3Þ
11 ¼ 2a01D1 ¼

�904nþ2r 4nþ 2rð Þt0½ 	
2

s90t
:2a01

ðA:27Þ

where the sub-subscript ‘4nþ 2r’ in �904nþ2,
represents the crack size for 90� mode in [0/902nþr]s
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laminate. Equating �C11 from (A.26) and (A.27), we
have

2n2��j�¼90a1 90ð Þ þ r2�90a
0
1 ¼ �904nþ2r 2nþ rð Þt0½ 	

2a01
ðA:28Þ

i.e.,

a1 90ð Þ ¼
�904nþ2r 2nþ rð Þ

2
�r2�90

2n2��j�¼90
a01 ðA:29Þ

Generalizing, we can write the interrelationship
between two sets of constants as

ai ¼
�904nþ2r 2nþ rð Þ

2
�r2�90

2n2��j�¼90
a0i i ¼ 1, 2, 3, 4 ðA:30Þ

Substituting (A.30) into (A.24), �Cpq for damaged
[0m/��n/90r]s laminate is given by

�Cpq ¼
�D

2a01 a04 0
2a02 0

Symm 2a03

2
4

3
5 ðA:31Þ

where

�D ¼
4t20
t

1

s�n

��
��j�¼90

2nþ rð Þ
2�904nþ2r � r2�90

� �
þ r2

�90
s90

	 

ðA:32Þ

where the constraint parameters are given by

�� ¼
�u2
� �

��2n

2nt0
; �904nþ2r ¼

�u2
� �

904nþ2r

4nþ 2rð Þt0
; �90 ¼

�u2
� �

902r

2rt0

ðA:33Þ

Similar analysis can be performed for [0m/90r /��n]s
laminates to obtain their damage-stiffness relations,
which are given in equation (21). The reader is referred
to Reference [18] for details.

List of Symbols

�u2 Average crack opening displacement
calculated through FEM by subtracting
nodal displacements in direction
normal to crack surfaces

D
ð�Þ
ij Components of damage mode tensor

for damage mode �
� Constraint parameter

x, y, z Coordinates in the global (laminate)
coordinate system

x1, x2, x3 Coordinates in the local (lamina) coor-
dinate system

�c Crack density
�� Crack density in �-ply
Gc Critical energy release rate
GIc Critical energy release rate in mode I
GIIc Critical energy release rate in mode II
� Damage mode

u, v, w CDisplacements in global coordinate
system

Ex,Ey,Gxy, �xy Elastic moduli for the damaged
laminate

E0
x,E

0
y,G

0
xy, �

0
xy Elastic moduli for the undamaged

laminate

E1,E2,G12, �12 Elastic moduli for the unidirectional
lamina

 Helmholtz free energy density
m, n, r CIndices to denote plies in a particular

orientation for the laminate layup
L Laminate length
V Laminate volume
W Laminate width
�m Mass density
s�n Normal crack spacing for cracks in a

ply with orientation �
~u�n, ~u�t Normalized average crack opening and

shear displacements
� Ply orientation
s Spacing between two adjacent cracks

Cð�Þpq Stiffness changes due to damage in
mode �

C0
pq Stiffness matrix for undamaged

laminate
Cijkl Stiffness tensor
"ij Strain tensor
�ij Stress tensor
S Surface area of a crack
t Thickness of the whole laminate,

including all plies
t0 Thickness of a single ply
tc Thickness of the cracked ply
ni Unit normal vector for a cracked

surface
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